
Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 1

Coordinator API
Specification
Version 2.4 2 March 2016

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 2

Notice:

As of the date of publication, this document is a release candidate specification subject to DECE
Member review and final adoption by vote of the Management Committee of DECE in
accordance with the DECE LLC Operating Agreement. Unless there is notice to the contrary, this
specification will become an adopted “Ecosystem Specification” on 17 April 2016.

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE. Digital Entertainment Content Ecosystem (DECE) LLC (“DECE”) and its members
disclaim all liability, including liability for infringement of any proprietary rights, relating to use
of information in this specification. No license, express or implied, by estoppel or otherwise, to
any intellectual property rights is granted herein.

Implementation of this specification requires a license from DECE. This document is subject to
change under applicable license provisions.

Copyright © 2009-2016 by DECE. Third-party brands and names are the property of their
respective owners.

Contact Information:

Licensing inquiries and requests should be addressed to us at: http://www.uvvu.com/uv-for-
business

http://www.uvvu.com/uv-for-business.php
http://www.uvvu.com/uv-for-business.php

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 3

Contents
1 Introduction and Overview .. 16

1.1 Scope ... 16
1.2 Document Organization .. 16
1.3 Document Conventions ... 17

1.3.1 XML Conventions .. 17
1.3.2 XML Namespaces .. 19

1.4 Normative References ... 19
1.5 Informative References ... 21
1.6 General Notes .. 21
1.7 Glossary of Terms .. 21
1.8 Customer Support Considerations .. 22

2 Communications Security .. 23
2.1 User Credentials .. 23

2.1.1 User Credential Recovery .. 23
2.1.2 Securing E-mail Communications .. 24

2.2 Invocation URL-based Security .. 24
2.3 Node Authentication and Authorization ... 24

2.3.1 Node Authentication ... 25
2.3.2 Node Authorization ... 25
2.3.3 Role Enumeration .. 26
2.3.4 Node-Based Access Control .. 29

2.4 User Access Levels ... 29
2.5 User Delegation Token Profiles ... 30

3 Resource-Oriented API (REST) .. 32
3.1 Terminology ... 32
3.2 Transport Binding .. 32
3.3 Resource Requests .. 32

3.3.1 Character encoding ... 32
3.3.2 Connection Reuse ... 33

3.4 Resource Operations ... 33
3.5 Conditional Requests ... 34
3.6 Request Throttling ... 35
3.7 Temporary Failures .. 35
3.8 Cache Negotiation ... 35
3.9 Request Methods .. 36

3.9.1 HEAD ... 37
3.9.2 GET .. 37
3.9.3 PUT and POST .. 37
3.9.4 DELETE ... 37

3.10 Request Encodings ... 38
3.11 Coordinator REST URL ... 38

3.11.1 Coordinator REST URL Parameter Encoding ... 39
3.12 Coordinator URL Configuration Requests ... 40
3.13 DECE Response Format ... 40

3.13.1 Compression ... 41

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 4

3.14 HTTP Status Codes ... 41
3.14.1 Informational (1xx) ... 42
3.14.2 Successful (2xx) ... 42
3.14.3 Redirection (3xx) ... 43
3.14.4 Client Error (4xx) ... 44
3.14.5 Server Errors (5xx) .. 45

3.15 Response Filtering and Ordering ... 46
3.15.1 Additional Attributes for Resource Collections .. 48

3.16 Entity Identifiers .. 49
4 DECE Coordinator API Overview .. 50
5 Policies .. 51

5.1 Policy Resource Structure .. 51
5.1.1 Policy Resource ... 51

5.2 Using Policies ... 51
5.3 Precedence of Policies ... 51
5.4 Policy Data Structures ... 52

5.4.1 PolicyList-type Definition .. 52
5.4.2 Policy Type Definition .. 52

5.5 Policy Classes ... 54
5.5.1 Account Consent Policy Classes .. 54
5.5.2 User Consent Policy Classes .. 56
5.5.3 Obtaining Consent ... 62
5.5.4 Allowed Consent by User Access Level ... 65
5.5.5 Parental Control Policy Classes ... 65
5.5.6 Policy Abstract Classes .. 68
5.5.7 Evaluation of Parental Controls .. 68

5.6 Policy APIs .. 69
5.6.1 PolicyGet() ... 69
5.6.2 PolicyCreate(), PolicyUpdate(), PolicyDelete() .. 71

5.7 Consent Policy Dependencies and API availability .. 74
5.8 Grace Periods for User Actions .. 76

5.8.1 User Status and Grace Periods .. 76
5.9 Policy Status Transistions .. 81

6 Assets: Metadata, ID Mapping and Bundles .. 82
6.1 Metadata Functions ... 82

6.1.1 MetadataBasicCreate() and MetadataDigitalCreate() .. 82
6.1.2 MetadataBasicGet, MetadataDigitalGet ... 86
6.1.3 MetadataBasicDelete(), MetadataDigitalDelete() .. 88
6.1.4 MetadataBasicList() ... 89
6.1.5 MetadataDigitalList() ... 90

6.2 ID Mapping Functions .. 91
6.2.1 MapALIDtoAPIDCreate(),MapALIDtoAPIDUpdate(), AssetMapALIDtoAPIDGet(),
AssetMapAPIDtoALIDGet() ... 92
6.2.2 LogicalAssetList() ... 94
6.2.3 LogicalAssetDelete() .. 95

6.3 Bundle Functions ... 96

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 5

6.3.1 BundleCreate(), BundleUpdate() ... 96
6.3.2 BundleGet() ... 97
6.3.3 BundleDelete() .. 98

6.4 Metadata ... 99
6.4.1 DigitalAsset Definition ... 99
6.4.2 BasicAsset Definition ... 102
6.4.3 DigitalAssetList Definition ... 102
6.4.4 BasicAssetList Definition ... 103

6.5 Mapping Data .. 105
6.5.1 Mapping Logical Assets to Content IDs ... 105
6.5.2 Mapping Logical to Digital Assets .. 105
6.5.3 MediaProfile Values .. 113

6.6 Bundle Data ... 113
6.6.1 Bundle Definition .. 114
6.6.2 LogicalAssetReference Definition ... 114
6.6.3 Bundle Status Transitions .. 115

7 Rights .. 116
7.1 Rights Functions .. 116

7.1.1 Rights Token Visibility ... 116
7.1.2 RightsTokenCreate() .. 117
7.1.3 RightsTokenDelete() .. 119
7.1.4 RightsTokenGet() ... 120
7.1.5 RightsTokenDataGet() ... 123
7.1.6 RightsLockerDataGet() .. 124
7.1.7 RightsTokenUpdate() .. 127
7.1.8 DownloadPlaybackLicenseReporting() .. 130
7.1.9 RightsTokenListCreate() .. 132

7.2 Rights Token Resource .. 134
7.2.1 RightsToken Definition .. 135
7.2.2 RightsTokenBasic Definition .. 135
7.2.3 SoldAs Definition ... 136
7.2.4 RightsProfiles Definition .. 136
7.2.5 PurchaseProfile Definition .. 136
7.2.6 DiscreteMediaRights Definition .. 138
7.2.7 RightsTokenInfo Definition ... 138
7.2.8 RightsTokenLocation Definition .. 139
7.2.9 ResourceLocation Definition ... 140
7.2.10 RightsTokenData Definition .. 140
7.2.11 PurchaseInfo Definition .. 140
7.2.12 RightsTokenFull Definition .. 141
7.2.13 RightsTokenDetails Definition .. 141
7.2.14 RightsTokenList Definition .. 143
7.2.15 License-type Definition ... 144
7.2.16 Rights Token Status Transitions .. 144
7.2.17 Rights De-Identification Process ... 145

8 License Acquisition ... 146

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 6

9 Domains.. 147
10 Legacy Devices.. 148

10.1 Legacy Device Functions .. 148
10.1.1 LegacyDeviceCreate() ... 148
10.1.2 LegacyDeviceDelete().. 149
10.1.3 LegacyDeviceUpdate() .. 150

11 Streams ... 152
11.1 Stream Functions ... 152

11.1.1 StreamCreate() .. 152
11.1.2 StreamListView(), StreamView() ... 154
11.1.3 Checking for Stream Availability ... 156
11.1.4 StreamDelete() .. 157
11.1.5 StreamRenew() ... 158
11.1.6 Batch Stream Reporting .. 160
11.1.7 Stream Visibility Rules ... 161

11.2 Stream Types ... 163
11.2.1 StreamList Definition .. 163
11.2.2 Stream Definition .. 163

11.3 Stream Status Transitions .. 164
12 Account Delegation .. 165

12.1 Types of Delegations ... 165
12.1.1 Delegation for Rights Locker Access ... 165
12.1.2 Delegation for Account and User Administration ... 166
12.1.3 Delegation for Linked LASPs ... 166

12.2 Initiating a Delegation ... 167
12.3 Revoking a Delegation ... 167

12.3.1 Authorization .. 167
13 Accounts ... 168

13.1 Account Functions ... 168
13.1.1 Inactive and Userless Accounts: ... 169
13.1.2 Account De-Identification Process: ... 169
13.1.3 Periodic removal of test accounts and related data ... 170
13.1.4 AccountCreate() .. 170
13.1.5 AccountUpdate() ... 170
13.1.6 AccountDelete() .. 171
13.1.7 AccountGet() ... 173
13.1.8 AccountUserCreate() .. 174

13.2 Merging Accounts .. 176
13.2.1 Basic Process for Performing a Merge .. 176
13.2.2 Common Requirements for Account Merge APIs ... 178
13.2.3 AccountMergeTest() ... 179
13.2.4 AccountMerge() .. 182
13.2.5 AccountMergeUndo() ... 184
13.2.6 Special Requirements for Security Tokens for Merge .. 186

13.3 Account-type Definition .. 187
13.3.1 AccountMerge-type definition ... 188

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 7

13.3.2 AccountMergeRecord-type definition .. 188
13.4 Account Status Transitions .. 189

14 Users ... 190
14.1 Common User Requirements .. 190

14.1.1 User De-Identification Process: .. 190
14.1.2 User Functions .. 191
14.1.3 UserCreate() .. 191
14.1.4 UserGet(), UserList() ... 194
14.1.5 UserUpdate() .. 197
14.1.6 UserDelete() .. 199
14.1.7 UserValidationTokenCreate() ... 201

14.2 User Types ... 209
14.2.1 UserData-type Definition .. 209
14.2.2 UserContactInfo Definition ... 211
14.2.3 ConfirmedPostalAddress-type Definition ... 212
14.2.4 ConfirmedCommunicationEndpoint Definition .. 212
14.2.5 AlternateEmail Definition ... 213
14.2.6 VerificationAttr-group Definition .. 213
14.2.7 PasswordRecovery Definition ... 214
14.2.8 PasswordRecoveryItem Definition ... 215
14.2.9 UserCredentials Definition .. 218
14.2.10 Password-type Definition ... 218
14.2.11 UserContactInfo Definition ... 218
14.2.12 ConfirmedCommunicationEndpoint Definition .. 219
14.2.13 Languages Definition .. 220
14.2.14 UserList Definition .. 221

14.3 User Status and APIs Availability ... 221
14.4 User Transition from Youth to Adult ... 221
14.5 User Status Transitions .. 221

15 Node Management .. 222
15.1 Nodes ... 222

15.1.1 Customer Support Considerations .. 222
15.1.2 Basic API Usage by the DECE Customer Care Role.. 223
15.1.3 Determining Customer Support Scope of Access to Resources 223

15.2 Node and Organization Functions ... 223
15.2.1 NodeGet() ... 224
15.2.2 NodeList() .. 225
15.2.3 NodeCreate(), NodeUpdate() ... 226
15.2.4 NodeDelete()... 227
15.2.5 OrganizationGet() ... 228

15.3 Node Types .. 229
15.3.1 NodeList Definition ... 229
15.3.2 NodeInfo Definition .. 229
15.3.3 OrgInfo-type Definition ... 230

15.4 Node and Org Images .. 230
15.5 Node Status Transitions ... 231

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 8

16 Discrete Media ... 232
16.1 Discrete Media Functions .. 232

16.1.1 DiscreteMediaRightCreate() ... 233
16.1.2 DiscreteMediaRightUpdate() .. 235
16.1.3 DiscreteMediaRightDelete() ... 236
16.1.4 DiscreteMediaRightGet() .. 237
16.1.5 DiscreteMediaRightList() .. 238
16.1.6 DiscreteMediaRightLeaseCreate() .. 239
16.1.7 DiscreteMediaRightLeaseConsume() .. 241
16.1.8 DiscreteMediaRightLeaseRelease() .. 243
16.1.9 DiscreteMediaRightConsume() ... 244
16.1.10 DiscreteMediaRightLeaseRenew() .. 245
16.1.11 DiscreteMediaRightFulfill() ... 246

16.2 Discrete Media Data Model ... 248
16.2.1 DiscreteMediaToken ... 248
16.2.2 DiscreteMediaTokenList Definition .. 249
16.2.3 Discrete Media States ... 249
16.2.4 Discrete Media Resource Status ... 249
16.2.5 DiscreteFulfillmentMethod ... 250

16.3 Discrete Media State Transitions... 251
17 Other .. 252

17.1 Resource Status APIs ... 252
17.1.1 StatusUpdate() .. 252

17.2 ResourceStatus Definition ... 254
17.2.1 Status Definition ... 255
17.2.2 StatusHistory Definition .. 255
17.2.3 PriorStatus Definition.. 255

17.3 ResourcePropertyQuery() .. 256
17.3.1 API Description .. 256
17.3.2 API Details ... 256
17.3.3 Behavior .. 257

17.4 Other Data Elements ... 262
17.4.1 AdminGroup Definition ... 262
17.4.2 ModificationGroup Definition ... 262

17.5 ViewFilterAttr Definition ... 262
17.6 LocalizedStringAbstract Definition .. 263
17.7 KeyDescriptor Definition ... 263
17.8 SubDividedGeolocation-type Definition .. 263

17.8.1 SubDividedGeolocation Values ... 264
17.8.2 CalculationMethod Values .. 265

17.9 Transaction and TransactionList Definitions ... 265
18 Push Notification .. 267

18.1.1 Supported Event Classes ... 267
18.1.2 Eligibility for Subscriptions .. 268
18.1.3 Event Data Structures ... 268
18.1.4 . Notification Payload Example ... 269

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 9

19 Error Management ... 271
19.1 ResponseError Definition .. 271

20 Appendix A: API Invocation by Role ... 272
21 Appendix B: Error Codes .. 280

21.1 Coordinator API Error Messages ... 280
21.2 S-Host Error Messages ... 309
21.3 Security Layer Error Messages .. 310

22 Appendix C: Protocol Versions ... 311
23 Appendix D: Policy Examples (Informative) ... 312

23.1 Parental-Control Policy Example ... 312
23.2 LockerDataUsageConsent Policy Example ... 312
23.3 EnableUserDataUsageConsent Policy Example ... 312

24 Appendix E: Coordinator Parameters .. 313
25 Appendix F: Geography Policy Requirements (Normative) ... 317
26 Appendix G: Field Length Restrictions ... 318

26.1 Limitations on the User Resource ... 318
26.2 Limitations on the Account Resource .. 318
26.3 Limitations on the Rights Resource ... 319
26.4 Limitations on the DigitalAsset Resource .. 319
26.5 Limitations on the LogicalAsset Resource ... 321
26.6 Limitations on the RightsToken Resource ... 321
26.7 Limitations on the BasicAsset Resource .. 322
26.8 Limitations on the Bundle Resource .. 323
26.9 Limitations on CompObj Resource .. 323
26.10 Limitations on Legacy Device Resource ... 324

27 Appendix H: User Status and APIs Availability ... 325
28 Appendix I: Requirements for Google Pub/Sub support ... 328

28.1 Requirements for the Google Pub/Sub service ... 328

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 10

Table 1: XML Namespaces .. 19

Table 2: Roles .. 28

Table 3: User Access Levels ... 29

Table 4: Supported HTTP headers for conditional requests ... 34

Table 5: Coordinator-supported HTTP headers for conditional requests .. 35

Table 6: Supported cache-response-directives ... 36

Table 7: Additional Attributes for Resource Collections ... 48

Table 8: EntityID-type definition ... 49

Table 9: PolicyList-type Definition .. 52

Table 10: Policy Type Definition .. 53

Table 11: Consent Permission by User Access Level ... 65

Table 12: User Access Level per Role .. 70

Table 13: Responses for newly created Basic Assets .. 88

Table 14: Responses for updated Basic Assets ... 88

Table 15: DigitalAsset Definition ... 99

Table 16: DigitalAssetMetadata-type Definition .. 100

Table 17: DigitalAssetODMP Definition .. 100

Table 18: DigitalAssetPresentation Definition .. 101

Table 19: DigitalAssetApplication Definition .. 101

Table 20: BasicAsset Definition ... 102

Table 21: DigitalAssetList Definition ... 102

Table 22: DigitialAssetReference Definition ... 103

Table 23: BasicAssetList Definition ... 103

Table 24: BasicAssetReference Definition .. 104

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 11

Table 25: LogicalAssetReference Definition ... 105

Table 26: LogicalAsset ... 106

Table 27: LogicalAssetList Definition .. 107

Table 28: LogicalAssetReference Definition ... 107

Table 29: AssetFulfillmentGroup .. 109

Table 30: DigitalAssetGroup Definition .. 112

Table 31: RecalledAPID Definition .. 112

Table 32: AssetRestriction Definition .. 113

Table 33: MediaProfile Values .. 113

Table 34: Bundle Definition .. 114

Table 35: LogicalAssetReference Definition ... 115

Table 36: Rights Token Visibility by Role... 116

Table 37: Rights Token Access by Role ... 122

Table 38: Allowed Resource Changes for RightsTokenUpdate ... 129

Table 39: RightsToken Definition .. 135

Table 40: RightsTokenBasic Definition .. 135

Table 41: SoldAs Definition ... 136

Table 42: RightsProfiles Definition .. 136

Table 43: PurchaseProfile Definition .. 138

Table 44: DiscreteMediaRightsRemaining Definition ... 138

Table 45: RightsTokenInfo Definition ... 139

Table 46: ResourceLocation Definition ... 140

Table 47: RightsTokenData Definition .. 140

Table 48: PurchaseInfo Definition ... 141

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 12

Table 49: RightsTokenFull Definition .. 141

Table 50: RightsTokenDetails-type ... 143

Table 51: RightsLockerData-type Definition ... 143

Table 52: RightsTokenReference-type Definition ... 143

Table 53: DatedEntityElementAttrGroup-type Definition .. 144

Table 544: License-type Definition ... 144

Table 55: StreamList Definition ... 163

Table 56: Stream Definition .. 164

Table 57: Account Status Enumeration .. 169

Table 58: Account-type Definition .. 187

Table 59: AccountMerge-type Definition ... 188

Table 60: AccountMergeRecord-type Definition .. 189

Table 61: User Data Authorization .. 198

Table 62: UserData-type Definition .. 210

Table 63: DateOfBirth-type definition .. 210

Table 64: DayOptionalDate-type Definition ... 211

Table 65: DisplayImage-type Definition .. 211

Table 66: UserContactInfo Definition ... 211

Table 67: ConfirmedCommunicationEndpoint Definition .. 213

Table 68: AlternateEmail Definition .. 213

Table 69: VerificationAttr-group Definition .. 214

Table 70: PasswordRecovery Definition ... 214

Table 71: PasswordRecoveryItem Definition .. 215

Table 72: User Attributes Visibility ... 216

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 13

Table 73: User Status Enumeration .. 218

Table 74: UserCredentials Definition .. 218

Table 75: UserContactInfo Definition ... 219

Table 76: ConfirmedCommunicationEndpoint Definition .. 220

Table 77: Languages Definition ... 221

Table 78: UserList Definition ... 221

Table 79: Roles .. 222

Table 80: NodeList Definition.. 229

Table 81: NodeInfo Definition ... 229

Table 82: OrgInfo Definition ... 230

Table 83: DiscreteMediaToken Definition .. 248

Table 84: DiscreteMediaTokenList Definition ... 249

Table 85: Discrete Media States ... 249

Table 86: Discrete Media Resource Status values .. 249

Table 87: DiscreteMediaFulfillmentMethod ... 250

Table 88: ElementStatus ... 255

Table 89: Status Definition .. 255

Table 90: StatusHistory Definition .. 255

Table 91: PriorStatus Definition .. 255

Table 92 Resource Accessibility ... 257

Table 93: Supported XPath Expression Components for non Customer Support Role 257

Table 94: Supported XPath Expression Components for Customer Support Role 258

Table 95: Supported Path Expressions .. 258

Table 96: AdminGroup Definition ... 262

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 14

Table 97: ModificationGroup Definition ... 262

Table 98: ViewFilterAttr Definition ... 263

Table 99: LocalizedStringAbstract Definition .. 263

Table 100: KeyDescriptor Definition ... 263

Table 101: SubDividedGelocation-type Definition ... 264

Table 102: Transaction Definition ... 266

Table 103: TransactionList Definition ... 266

Table 104: ResponseError Definition .. 271

Table 105: Protocol Versions .. 311

Figure 1: Resource Relationships .. 26

Figure 2: Policy Dependence and Enabled APIs .. 75

Figure 3: DGEO_TOU_ACCEPTANCE_GRACE_PERIOD > 0 – User accepts within the grace period 77

Figure 4: DGEO_TOU_ACCEPTANCE_GRACE_PERIOD > 0 – User accepts after the grace period 77

Figure 5: DGEO_TOU_ACCEPTANCE_GRACE_PERIOD is 0 .. 77

Figure 6: DGEO_TOU_UPDATE_GRACE_PERIOD is > 0 ... 78

Figure 7: DGEO_TOU_UPDATE_GRACE_PERIOD is 0. ... 78

Figure 8: When DGEO_TOU_ACCEPTANCE_GRACE_PERIOD is > 0 - Child User with CLG 79

Figure 9: When DGEO_TOU_ACCEPTANCE_GRACE_PERIOD is 0 - Child User with CLG 79

Figure 10: TOU Change with Grace Period > 0 Child and CLG ... 80

Figure 11 TOU Change with Grace Period of 0 Child and CLG .. 80

Figure 12: Policy Status Transitions .. 81

Figure 13: Rights Token Resource ... 134

Figure 14 Example Email-based Delegation Token Establishment Flow .. 208

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 15

Figure 15: Discrete Media Right State Transitions .. 251

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 16

1 Introduction and Overview

This specification details the API protocols and message structures of the Coordinator. The Coordinator
provides an in-network architecture component, which houses shared resources amongst the various
Roles specified in [DSystem]. This specification also covers the Web Portal, an independent HTML-based
user interface to Coordinator functionality.

1.1 Scope

The APIs specified here are written in terms of Roles, such as DSPs, LASPs, Retailers, Content Providers,
Portals, and customer support. The Coordinator Customer Support Role is part of the broader definition
of Coordinator, and therefore APIs are designed to model behavior rather than to specify
implementation. Each instantiation of a Role, such as a particular Retailer or DSP, is called a Node.

1.2 Document Organization

This document is organized as follows:

Introduction and Overview—Provides background, scope and conventions

Communications Security – Provides Coordinator-specific security requirements beyond what is already
specified in [DSecMech]

Resource-Oriented API – Introduces the Representational State Transfer (REST) model, and its
application to the Coordinator interfaces

DECE Coordinator API Overview – Briefly introduces the Coordinator interfaces

Policies – Specifies the Policy data model and related APIs

Assets, Metadata, Asset Mapping and Bundles – Specifies the Assets and Asset Metadata data model
and related APIs

Rights – Specifies the RightsToken data model and related APIs

Legacy Devices – Specifies the Legacy Device data model and associated APIs

Streams – Specifies the Stream and Stream Lease data model and associated APIs

User Delegation – Specifies the delegation model between Nodes and Users

Node to Account Delegation – Specifies the various types of delegations and their management

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 17

Accounts – Specifies the Account data model and associated APIs

Users – Specifies the User data model and associated APIs

Node Management – Specifies the Node data model and associated APIs

Discrete Media – Specifies the Discrete Media Token data model and associated APIs

Other – Specifies other various structures, in particular resource status and its management API

1.3 Document Conventions

The following terms are used to specify conformance elements of this specification. These are adopted
from the ISO/IEC Directives, Part 2, Annex H [ISO-P2H].

The terms SHALL and SHALL NOT indicate requirements strictly to be followed in order to conform
to the document and from which no deviation is permitted.

The terms SHOULD and SHOULD NOT indicate that among several possibilities one is recommended
as particularly suitable, without mentioning or excluding others, or that a certain course of action is
preferred but not necessarily required, or that (in the negative form) a certain possibility or course
of action is deprecated but not prohibited.

The terms MAY and NEED NOT indicate a course of action permissible within the limits of the
document.

Terms defined to have a specific meaning within this specification will be capitalized, for example,
“User,” and should be interpreted with their general meaning if not capitalized. Normative key words
are written in all caps, for example, “SHALL.”

1.3.1 XML Conventions

This document uses tables to define XML structures. These tables may combine multiple elements and
attributes in a single table. The tables do not align precisely with the XML schema; but they should not
conflict with the schema. In any case where the XSD and annotations within this specification differ, the
Coordinator Schema XSD [DCSchema] SHALL be considered authoritative.

Most elements and attributes defined in [DCSchema] have practical maximum length restrictions. Such
restrictions are defined in Appendix G.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 18

1.3.1.1 Naming Conventions

This section describes naming conventions for DECE XML attributes, element and other named entities.
The conventions are as follows:

• Names use initial caps, as in Names.

• Elements begin with a capital letter, and use camel-case, as in InitialCapitalLetters.

• Attributes begin with a capital letter, as in Attribute.

• XML structures are formatted using a monospace font, for example: RightsToken.

• The names of both simple and complex types are followed with the suffix“-type.”

1.3.1.2 Element Table Overview

The element-definition tables, found throughout the document, contain the following headings:

Element: the name of the element.

Attribute: the name of the attribute.

Definition: a descriptive definition, which may define conditions of use or other constraints.

Value: the format of the attribute or element. The value may be an XML type (for example string)
or a reference to another element table (for example, “see Table 999”) or section in the document.
Annotations for limits or enumerations may be included.

Cardinality: specifies the cardinality of the element, for example, 0...n. The default cardinality value
is 1.

The first row in the table names the element being defined. It is followed by the element’s attributes,
and then by child elements. All child elements are included. Simple child elements may be fully defined
in the table.

DECE defined data types and values are shown in monospace font, as in
urn:dece:role:retailer:customersupport.

1.3.1.3 Parameter Naming Convention

There are numerous parameters in the DECE architecture that are referred to across documents. These
may be DECE variables, which are specified in [DSystem], while others may be defined in other

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 19

publications. All of these variables use the same naming convention, however. They are always rendered
in uppercase:

[documentref]_VARIABLE

where:

[documentref] is a reference to the publication where the variable is defined.

If the variable does not include a [documentref], it is defined in [DSystem]

1.3.2 XML Namespaces

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for
their respective namespaces as follows, whether or not a namespace declaration is present in the
example:

Prefix XML Namespace Description
dece: http://www.decellc.org/schema/2015/03/coordinator This is the DECE Coordinator

Schema namespace, as defined in
the schema [DCSchema].

md: XML schema namespace as defined in [DMeta] for [XSD-META-
CM]

This schema defines common
metadata, which is the basis for
DECE metadata.

xenc: http://www.w3.org/2001/04/xmlenc# This is the W3C XML Encryption
namespace.

xs: http://www.w3.org/2001/XMLSchema This is the W3C XML schema
namespace [XML].

Table 1: XML Namespaces

1.4 Normative References

The following table contains the complete list of normative DECE and external publications.

Reference Description

[DCMeta] Common Metadata Specification and Schema
[DCSchema] Coordinator API XML Schema
[DDiscreteMedia] Discrete Media Specification
[DGeo] Geography Policies Specification
[DMeta] Content Metadata Specification
[DMetaCR] Common Metadata Content Ratings Specification

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 20

Reference Description
[DPublisher] Content Publishing Specification
[DSecMech] Message Security Mechanisms Specification

[DSystem] System Specification
[DNSSEC] R. Arends, et al, DNS Security Introduction and Requirements, IETF, March 2005.

Available at http://www.ietf.org/rfc/rfc4033.txt
R. Arends, et al, Resource Records for the DNS Security Extensions, IETF, March 2005.
Available at http://www.ietf.org/rfc/rfc4034.txt
R. Arends, et al, Protocol Modifications for the DNS Security Extensions, IETF March 2005.
Available at http://www.ietf.org/rfc/rfc4035.txt

[HTML4] D Raggett , et al, HTML 4.01 Specification, W3C, December 1999.
Avaiable at http://www.w3.org/TR/html401/

[ISO-P2H] ISO/IEC Directives, Part 2, Annex H http://www.iso.org
[ISO3166-1] Codes for the representation of names of countries and their subdivisions—

Part 1: Country codes, 2007
[ISO3166-2] Codes for the representation of names of countries and their subdivisions—

Part 2: Country subdivision codes
[ISO8601] ISO 8601:2000 Second Edition, Representation of dates and times, second edition, 2000-12-15
[RFC2045] N. Freed, et al, Multipurpose Internet Mail Extensions. (MIME) Part One: Format of Internet

Message Bodies, November 1996. Available at http://www.ietf.org/rfc/rfc2045.txt
[RFC2616] Hypertext Transfer Protocol —HTTP/1.1
[RFC3986] Uniform Resource Identifier (URI): Generic Syntax
[RFC4346] The Transport Layer Security (TLS) Protocol Version 1.1
[RFC4646] Philips, A, et al, RFC 4646, Tags for Identifying Languages, IETF, September 2006.

Available at http://www.ietf.org/rfc/rfc4646.txt
[RFC4647] Philips, A, et al, RFC 4647, Matching of Language Tags, IETF, September 2006.

Available at http://www.ietf.org/rfc/rfc4647.txt
[RFC5246] The Transport Layer Security (TLS) Protocol Version 1.2

[Unicode] J. D. Allen, et al, The Unicode Standard Version 6.0 – Core Specification (ISO/IEC 10646:2010), The
Unicode Consortium, October 2010.
Avaiable at http://www.unicode.org/versions/Unicode6.0.0/

[XML] “XML Schema Part 1: Structures”, Henry S. Thompson, David Beech, Murray Maloney, Noah
Mendelsohn, W3C Recommendation 28 October 2004, http://www.w3.org/TR/xmlschema-1/
“XML Schema Part 2: Datatypes”, Paul Biron and Ashok Malhotra, W3C Recommendation 28
October 2004, http://www.w3.org/TR/xmlschema-2/

[XMLENC] XML Encryption Syntax and Processing – W3C Recommendation
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

[XPATH] XML Path Language (XPath) 2.0 (Second Edition) – W3C Recommendation
http://www.w3.org/TR/xpath20/

[XPATHFN] XQuery 1.0 and XPath 2.0 Functions and Operators (Second Edition) – W3C Recommendation, 14
December 2010, http://www.w3.org/TR/xpath-functions/

http://www.iso.org/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-functions/

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 21

1.5 Informative References

Reference Description

[UCheckout] H. Nielsen, et al, Detecting the Lost Update Problem Using Unreserved Checkout, W3C.
May 1999. http://www.w3.org/1999/04/Editing/

[SAML] OASIS, "Security Assertion Markup Language (SAML) v2.0"
See http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip

[CMCRSchema] See http://www.movielabs.com/md/ratings/

1.6 General Notes

• All times are in Coordinated Universal Time (UTC) unless otherwise stated.

• An unspecified cardinality (“Card.”) is always 1.

• Character encoding support for XML instance documents SHALL be UTF-8 (see Character
encoding for details)

1.7 Glossary of Terms

The following terms have specific meanings in the context of this specification. Additional terms
employed in other specifications, agreements or guidelines are defined there. The definitions of many
terms have been consolidated in [DSystem].

Affiliated Node: A Node is said to be an Affiliated Node if the Nodes share a common parent
Organization. For example, a Retailer and LASP Node within the same Organization are Affiliated Nodes.
See section 2.3.2.1.

API Client: An authorized client of one or more of the APIs defined in this specification. For example, a
Node or Licensed Application.

Delegation Security Token: A Security Token, as defined in [DSecMech], used by a Node to demonstrate
authorization has been granted to it in order to performed specific operations on Accounts, Users,
Devices, or Lockers, based on established User and Account policies.

http://www.w3.org/1999/04/Editing/
http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 22

Geography Policy: Publication that details specific operational concerns, constraints, or guidance when
providing services to a User. Typically, these include guardianship requirements, privacy requirements,
etc.

Policy: A resource, defined by a policy class, which establishes a rule set, the Resources to which the
rules apply, and the requesting entity. A policy may be a component of a policy list.

Resource: Any coherent and meaningful concept that may be addressed. A representation of a Resource
is typically a document that captures the current or intended state of the Resource. This specification
defines the following concrete Resources: Asset, Logical Asset, Node, Account, User, Policy, Rights
Token, Rights Locker, Stream, and Discrete Media Rights Token.

UTC: Coordinated Universal Time, a time standard base on the Greenwich Mean Time (GMT) updated
with leap seconds (see http://www.bipm.org/en/scientific/tai/time_server.html)

1.8 Customer Support Considerations

The customer support Role requires historical data and must occasionally manipulate the status of
resources; for example, to restore a mistakenly deleted item. Accordingly, the data models include
provisions for element management. For example, most resources contain a ResourceStatus element,
which is defined as dece:ElementStatus-type. The setting of this element determines the current
state of the element (for example, active, deleted, suspended, etc.). The element also records the
prior status of the resource.

In general, for each Role specified, there is a corresponding customer support sub-role (for example,
urn:dece:role:coordinator:customersupport). The degree of access to system-maintained
resources that is allowed to customer support roles is generally greater than that allowed to the parent
role. This is intended to facilitate good customer support. For more information about the relationship
between Nodes in an organization, see section 2.3.

Coordinator API Specification Version 2.2

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 23

2 Communications Security

Transport security requirements and authentication mechanisms between Users, Nodes, and the
Coordinator are specified in [DSecMech]. Implementations SHALL conform to the requirements specified
there.

2.1 User Credentials

The Coordinator SHALL verify the User Credentials established by the User.

These credentials SHALL conform to the User Credential Token Profile specified in [DSecMech].

2.1.1 User Credential Recovery

The Coordinator SHALL provide e-mail-based credential recovery.

After the User has recovered his or her credentials, the Coordinator SHALL send an e-mail message to
the User’s primary EmailAddress, indicating that the User’s password has been changed.

2.1.1.1 E-mail-based User Credential Recovery

To initiate an e-mail-based password recovery process, the User may use the password-recovery
mechanisms provided by the Web Portal, or a Node may employ the UserValidationTokenCreate API
defined in section 14.1.7. In either case, an e-mail message is sent, by the Coordinator, to the
provisioned primary EmailAddress.

The confirmation e-mail SHALL adhere to the requirements set forth below in section 2.1.2.

The confirmation e-mail SHALL contain a confirmation token, and instructions for the User.

The confirmation token SHALL be no fewer than the number of alphanumeric characters determined by
the defined Ecosystem parameter DCOORD_E-MAIL_CONFIRM_TOKEN_MINLENGTH.

This token SHALL be valid for the minimum length of time determined by the defined Ecosystem
parameter DCOORD_E-MAIL_CONFIRM_TOKEN_MINLIFE, and SHALL NOT be valid for more than the
maximum length of time determined by the defined Ecosystem parameter DCOORD_E-
MAIL_CONFIRM_TOKEN_MAXLIFE. It can be used only once.

The Coordinator SHALL require the User to provide a valid confirmation token before establishing a new
password.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 24

The Coordinator SHALL provide the means to distinguish and select between multiple Users with the
same email address.

After the token is submitted by the User, the Coordinator SHALL require the User to establish a
password. Note that the User may reuse the same password.

The Coordinator SHALL then accept the User’s credentials.

2.1.2 Securing E-mail Communications

E-mails sent to Users MAY include links to the Coordinator.

Senders SHOULD make a reasonable effort to avoid sending DNS names, e-mail addresses, and other
strings in a format that may be converted to HTML anchor (<A/>) entities when displayed in email user
agents. That is, links to the Coordinator should be the only ‘clickable’ items in email messages.

2.2 Invocation URL-based Security

Many of the URL patterns defined in the Coordinator APIs include identifiers for resources like Account
or User. Whenever present, those identifiers SHALL be verified against the corresponding values
available in the security context of the invocation. For instance, a call to the RightsTokenCreate() API is
performed by invoking a URL in the form:

[BaseURL]/Account/{AccountID}/RightsToken

where:

AccountID is the identifier for the Account. (AccountIDs are unique to the Node.)

The Coordinator SHALL compare the identifiers employed in the Resource locations (that is, the URLs) to
the identifiers supplied in the Delegation Security Token.

The Coordinator SHALL verify the AccountID in the invocation URL, against the corresponding value in
the presented Delegation Security Token.

2.3 Node Authentication and Authorization

The Coordinator SHALL require all Nodes to authenticate in accordance with the security provisions
specified in [DSecMech].

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 25

2.3.1 Node Authentication

Nodes SHALL be identified by their NodeID in the associated Node’s x509 certificate as defined in
[DSecMech]. The list of approved Nodes creates an inclusion list that the Coordinator SHALL use to
authorize access to all Coordinator resources and services. Access to any Coordinator interface by a
Node whose identity cannot be mapped SHALL be rejected. The Coordinator MAY respond with a TLS
alert message, as specified in [RFC4346], [RFC5246] or [SSL3] as applicable.

2.3.2 Node Authorization

Node authorization is enabled by an access-control list that maps Nodes to Roles. A Node is said to
possess a given Role if the DECE Role Authority function, provided by the Coordinator, has asserted that
the Node has the given Role in the Coordinator.

API interfaces specify any necessary Delegation Security Token requirements that may be required for
API invocation. Requests omitting Delegation Security Tokens where API requirements indicate they are
required SHALL result in the appropriate 4xx HTTP response.

Each API call defined in this document has a corresponding list of Roles that are authorized to invoke
said API call. A Node SHALL NOT invoke an API call while donning a Role that is not present in the
corresponding authorized Roles list.

A Node SHALL NOT don more than one Role. The roles are enumerated in Table 2 and Table 3 on page
26.

The Coordinator SHALL verify the Delegation Security Token, as defined in [DSecMech], which:

• SHALL be a valid, active token issued by the Coordinator.

• SHALL contain at least an AccountID (and SHOULD contain a UserID), each of which SHALL be
unique in the Coordinator-Organization namespace.

• SHALL map to the associated API endpoint, by matching the AccountID and UserID of the
endpoint with the AccountID and the UserID in the Delegation Security Token (as described in
section 2.2).

• SHALL be presented by a Node identified in the token, by matching the Node subject of the
certificate with a member of the <Audience> element of the Delegation Security Token.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 26

2.3.2.1 Node Equivalence in Policy Evaluations

The following relational diagram shows the Coordinator API authorization model. For the purposes of
evaluating API authorization, the Coordinator SHALL evaluate policies established on Nodes, Roles and
Organizations. Although one can consider an Organization as a set of Roles mapped to different Nodes
(see section 6 in [DSystem]) it is better, in the context of the authorization model, to consider an
organization as a set of Nodes, each donning a particular role. Such Nodes are considered Affiliated
Nodes.

It is possible that an Organization will have more than one Node with identical Roles. In such
circumstances, the Coordinator SHALL consider all Nodes in the same Organization, which are cast in the
same Role, as the same Node. Of course, their NodeIDs will be different.

For example, consider a retailer, which has Nodes X, Y, and Z. Nodes X and Y are cast in the role
urn:dece:role:retailer, and Node Z is cast in the role urn:dece:role:dsp. In this case, where
access to resources (such as a Rights Token) is restricted based on the NodeID and Role, the Coordinator
would allow access to the resource to both Nodes X and Y.

Figure 1: Resource Relationships

2.3.3 Role Enumeration

The following tables describe all Roles in the DECE ecosystem, including each Role’s URI and description.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 27

Role Role Identifier Description (Informative)
Coordinator urn:dece:role:coordinator The Coordinator is a central entity owned and

operated by the DECE LLC that facilitates
interoperability across Ecosystem services and
stores/manages the Account. The Coordinator
operates at a known Internet address. The
Coordinator Role implicitly has access to all
Coordinator APIs.

Coordinator
Customer Support

urn:dece:role:coordinator:cus
tomersupport

The Tier 2 Customer Support function of the
Coordinator Role.

Customer Support urn:dece:role:dece:customersu
pport

A generalized Tier 1 customer support function,
which is not affiliated with any other Role

Retailer urn:dece:role:retailer The Retailer Role provides the customer-facing
storefront service and sells Ecosystem-specific
content to consumers.

Retailer
Customer Support

urn:dece:role:retailer:custom
ersupport

The Tier 1 Customer Support function of the Retailer
Role.

LASP urn:dece:role:lasp A Locker Access Streaming Provider (LASP) is defined
as a streaming media service provider that
participates in the Ecosystem and complies with
DECE policies to stream Content to LASP Clients.

Linked LASP urn:dece:role:lasp:linked A Linked LASP is a service that may stream content
to any LASP Client. However, Linked LASPs accounts
are persistently bound and provisioned to a single
DECE Account versus a User, as Linked LASPs
services are not associated with a particular User but
to an Account.

Linked LASP
Customer Support

urn:dece:role:lasp:linked:cus
tomersupport

The Tier 1 Customer Support function of the Linked
Lasp Role.

Dynamic LASP urn:dece:role:lasp:dynamic A Dynamic LASP is a LASP service that streams
Content to a LASP Client to an authenticated User.

Dynamic LASP
Customer Support

urn:dece:role:lasp:dynamic:cu
stomersupport

The Tier 1 Customer Support function of the
Dynamic Lasp Role.

DSP Customer
Support

urn:dece:role:dsp:customersup
port

The Tier 1 or Tier 2 Customer Support function of the
DSP Role supporting its affiliated Retailer Role and
(optionally) the Retailers customers.

Content Provider urn:dece:role:contentprovider The Content Provider Role is the authoritative
source for all DECE Content and is implemented and
run by the various content owner or their partners.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 28

Role Role Identifier Description (Informative)
Portal urn:dece:role:portal This role makes available an interactive web

application (referred to as the Web Portal) for the
DECE consumer brand and gives Users direct access
to Account settings such as a view of their Rights,
management of Users in their Account and the
ability to add and remove Devices via the use of
standard web browsers.

Portal Customer
Support

urn:dece:role:portal:customer
support

The Tier 2 Customer Support function of the Portal
roles.

DECE urn:dece:role:dece The DECE role is reserved for official use by the
consortium. It will be employed when the
Coordinator is asked by DECE to take some action
on a resource in the system (for example, to disable
an Account due to fraudulent activities detected by
the system).

Access Portal urn:dece:role:accessportal
The Access Portal Role provides User access to DECE
functions such as User and Account management,
Device management, and so on, similar to the access
that may be provided by a Retailer or LASP, or Web
Portal.

Access Portal
Customer Support

urn:dece:role:accessportal:cu
stomersupport

The Tier 1 Customer Support function of the Access
Portal role.

Table 2: Roles

User Access Level Description
urn:dece:role:account Represents the Account. Used to describe security

requirements on API definitions.
urn:dece:role:user Represents any user in the system. Used to

describe security requirements on API definitions.
urn:dece:role:user:class:basic A user with the most limited access level to the

DECE account it belongs to (see [DSystem] section
7.2.2).

urn:dece:role:user:class:standard A user with an intermediate access level to the
DECE account it belongs to (see [DSystem] section
7.2.2).

urn:dece:role:user:class:full A user with the highest access level to the DECE
account it belongs to (see [DSystem] section
7.2.2).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 29

Table 3: User Access Levels

2.3.4 Node-Based Access Control

As described in the above sections (2.3.1 and 2.3.2) the Coordinator presently requires API invocation
authentication and authorization mechanisms in the form of Node TLS credentials, Role authorization,
and a Delegation Security Token profile.

In addition to those mechanisms, the Coordinator SHALL enforce a Node-based access control for each
API call. This access control is based on a, per API call, list of authorized Nodes. The access control list is
defined as follows:

• An enumeration of Nodes which lists the only Nodes allowed to invoke this API call.

• If the list is empty (or not present), the API call cannot be invoked at all.

• If the list contains the '*' character, the API call is available to all Nodes (note that when '*' is
included, any other Node name in the list becomes irrelevant).

By default, a Coordinator API call is not subject to Node-based access control. When enforced for a
particular API call, it is indicated in that API call’s detail description with the following text:
Node-based Access Control: Yes

2.4 User Access Levels

[DSystem] defines three DECE User access levels (section 7.2.2). The Coordinator uses these access
levels during the authorization phase of API invocations. The Coordinator calculates the role of a user
referenced in the Security Token presented to the API, as it is not present in the token itself. Each API
defined in this specification indicates the Security Token Subject Scope, and, when present, will have
one or more of the following values:

• urn:dece:role:user – the API can be used by any User Access Level. User and Account
Policies are used in the authorization decision process.

• urn:dece:role:self – the API can be used only on resources that are bound to the User
identified in the Security Token presented to the API.

• urn:dece:role:user:basic – the API can be used by the Basic-Access User Access Level.
User and Account Policies are used in the authorization decision process.

• urn:dece:role:user:standard – the API can be used by the Standard-Access User Access
Level. User and Account Policies are used in the authorization decision process.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 30

• urn:dece:role:user:full – the API can be used by the Full-Access User Access Level. User
and Account Policies are used in the authorization decision process.

• urn:dece:role:account – the API can by used by any User Access Level. No User Policies are
used in any authorization decision process.

• urn:dece:role:user:parent – the API can by used by the User identified as the parent or
legal guardian of the resource. User and Account Policies are used in the authorization decision
process.

A User’s access level in combination with the User Resource Status uniquely determine the APIs
available to the User at any time. There are several factors that influence User status predominantly
including mandatory and elective policy consents for self, additional policies set for the User by other
Users within the Account, dependencies between Users (e.g., a Child’s status on the Child’s Connected
Legal Guardian should that Connected Legal Guardian be in a non active state for any reason), and
other lesser influences. APIs available to a User, as identified in the presented Delegation Security
Token, SHALL be as defined in Appendix H, based on User status. API invocations not available to the
User per Appendix H SHALL receive an HTTP 403 status code (Forbidden).

2.5 User Delegation Token Profiles

There are many scenarios where a Node, such as a Retailer or LASP, is interacting with the Coordinator
on behalf of a User. To properly control access to User data while at the same time providing a simple
yet secure user experience, authorization is explicitly delegated by the User to the Node using the
Delegation Security Token profiles defined in [DSecMech].

The Coordinator SHALL only provide Delegation Security Tokens as described in [DSecMech] Section 5 to
Nodes on behalf of Users whose status is one of urn:dece:type:status:pending,
urn:dece:type:status:active or urn:dece:type:status:blocked:tou. Valid status values
are defined in Table 73, on page 218.

[DSecMech] restricts certain (user-level) Delegation Security Tokens to be evaluated at the Account
level. Such evaluations shall supersede any Delegation Security Token Subject Scope defined in this
specification.

Every Delegation Security Token Profile defined in [DSecMech] is required to specify methods for
acquisition and revocation of the delegation.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 31

Retailer and LASP Node Roles SHALL support at least one Delegation Security Token Profile other than
User Credential Token Profile. These Roles will be required to support the request/acquisition method of
a Delegation Security Token Profile from the Coordinator, as well as its revocation method.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 32

3 Resource-Oriented API (REST)

The DECE architecture is comprised of a set of resource-oriented HTTP services. All requests to a service
target a specific resource with a fixed set of request methods. The set of methods that may be
successfully invoked on a specific resource depends on the resource being requested and the identity of
the requestor. Such requestors are termed API Clients in this section, any authorized client of an API.

3.1 Terminology

Resources: Data entities that are the subject of a request submitted to the server. Every HTTP message
received by the service is a request to perform a specific action (as defined by the method header) on a
specific resource (as identified by the URI path).

Resource Identifiers: All resources in the DECE ecosystem can be identified using a URI.

Resource Groups: A resource template defines a parameterized resource identifier that identifies a
group of resources, usually of the same type. Resources within the same resource group generally have
the same semantics (methods, authorization rules, query parameters, etc.).

3.2 Transport Binding

The DECE REST architecture is intended to employ functionality only specified in [RFC2616]. The
Coordinator SHALL be unconditionally compliant with HTTP/1.1. Furthermore, the REST API interfaces
SHALL conform to the transport security requirements specified in [DSecMech].

3.3 Resource Requests

For all requests that cannot be mapped to a resource, a 404 status code SHALL be returned in the
response. If the resource does not allow a request method, a 405 status code will be returned. In
compliance with HTTP 1.1 [RFC2616], the server will also include an “Allow” header.

Authorization rules are defined for each method of a resource. If a request is received that requires
Delegation Security Token-based authorization, the server SHALL return a 401 status code. If the client is
already authenticated and the request is not permitted for the principal identified by the authentication
header, a 401 status code will also be returned.

3.3.1 Character encoding

All XML elements in requests (or responses) utilize UTF-8 character encoding except where XML
restricts. Although these Unicode characters don’t usually appear in character sets, the following

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 33

Unicode characters are treated as non-whitespace and thus accepted as valid for any element: {U+0085,
U+00A0, U+2007, U+202F}. Note that.

All elements accept the following as valid values:

- Non-whitespace

- Whitespace co-mingled with non-whitespace

- Any combination of {U+0085, U+00A0, U+2007, U+202F} with or without other non-whitespace

3.3.2 Connection Reuse

To avoid the overhead associated with establishing HTTP connections and TLS sessions for each
transaction, the Coordinator supports persistent HTTP connections, as defined by [RFC2616] as well as
TLS session reuse as defined by [RFC5246]. The duration of TLS sessions and HTTP connection reuse is
variable based on resource utilization of Coordinator APIs. API Clients can use persistent connections
for multiple transactions.

API Clients SHOULD establish persistent HTTP connections in accordance with [RFC2616].

API Clients SHOULD reuse TLS sessions in accordance with [RFC5246].

Although persistent connections and TLS session reuse are strongly recommended, API Clients should
negotiate multiple concurrent connections when necessary (e.g. to fulfill multiple requests associated
with Resource collections and different user sessions).

3.4 Resource Operations

Resource requests (individually documented below) follow a pattern whereby:

• Successful (2xx) requests which create a new resource return a response containing a reference
to the Location of the new resource, and successful (2xx) requests which update or delete
existing resources return a 200 status code (OK).

• Unsuccessful requests which failed due to client error (4xx) include an Errors object describing
the error, and SHALL include language-neutral application errors defined in section 3.14.

All of the status codes used by the Coordinator are standard HTTP-defined status codes.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 34

3.5 Conditional Requests

DECE resource authorities and resource clients SHALL support strong entity tags as defined in Section
3.11 of [RFC2616]. Resource Authorities must also support conditional request headers for use with
entity tags (If-Match and If-None-Match). Such headers provide clients with a reliable way to avoid lost
updates and the ability to perform strong cache validation. Coordinator services are not required to
support the HTTP If-Range header.

Clients SHALL use unreserved-checkout mechanisms as described in [UCheckout] to avoid lost updates.

Following recommendations in [RFC2616], the Coordinator generates both an entity tag (ETag) and a Last-
Modified value for all cacheable Resources. The Coordinator includes those validators in its responses.

When an ETag has been provided, Nodes SHALL use the ETag in any subsequent conditional requests
(using If-Match or If-None-Match). If both ETag and Last-Modified are available, Nodes SHOULD combine
those in any subsequent conditional requests.

The tables 4 and 5 describe the supported HTTP headers for conditional requests. Nodes SHALL only use
those headers for the type of request defined in the table 4. The Coordinator ignores any other HTTP
header (for caching or conditional request). Note that for conditional requests, the Coordinator reserves
the option to respond with 200 accompanied by an ETag and Last-Modified value for any cacheable
resource.

HTTP header Suppli
ed By

Possible
Values Requests Possible HTTP Error

Status Code Example

If-None-Match Node * or ETag GET/HEAD 304 Not Modified
If-None-Match: “1352401382138”

or If-None-Match: *

If-Match Node * or ETag PUT/DELETE 412 Precondition
failed

If-Match: “1352401382138”

or If-Match: *

If-Modified-
Since Node HTTP-date GET/HEAD 304 Not Modified If-Modified-Since: Wed, 07 Nov

2012 21:18:28 GMT

If-Unmodified-
Since Node HTTP-date PUT/DELETE 412 Precondition

failed
If-Unmodified-Since: Wed, 07

Nov 2012 21:18:28 GMT

Table 4: Supported HTTP headers for conditional requests

HTTP header Supplied By Possible Values Supported
Responses Example

ETag Coordinator (strong validator) GET/HEAD ETag: “1352401382138”

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 35

Last-Modified Coordinator HTTP-date (weak validator) GET/HEAD Last-Modified: Wed, 07
Nov 2012 21:18:28 GMT

Table 5: Coordinator-supported HTTP headers for conditional requests

3.6 Request Throttling

The Coordinator MAY use request throttling techniques at the HTTP or TCP level to manage load on the
Coordinator.

The Coordinator MAY use HTTP-level responses, TCP-level responses or in any other appropriate
technical responses to protect the Coordinator from harmful behavior such as Denial of Service (DoS)
attacks. An example of TCP-level response is limiting the number of concurrent open sockets.

When request throttling is enforced with HTTP, the Coordinator SHALL respond with an HTTP status
code 503 (Service Unavailable) and include the HTTP header Retry-After: {delay}. The value
delay may be expressed in either time or number of seconds.

The Coordinator SHALL issue delay values using algorithms that avoid unfairly starving properly
behaving Nodes. Fairness is treating all Nodes equivalently. Starvation is excessive delays, virtually
denying service. This requires balancing delays across all requestors.

Nodes and Devices SHALL properly handle HTTP status code 503 (Service Unavailable) and with Retry-
After: {delay} to ensure proper behavior under request throttling conditions.

3.7 Temporary Failures

If the Coordinator requires, for operational reasons, to make resources temporarily unavailable, it may
respond with a 307 status code (Temporary Redirect) indicating a temporary relocation of the resource.
The Coordinator may also respond with a 503 status code (Service Unavailable) if the resource request
cannot be fulfilled, and the resource (or the requested operation on a resource) cannot be performed
elsewhere.

3.8 Cache Negotiation

The Coordinator implements HTTP caching using the following cache response directives:

cache-response-
directive Set By Comment Example

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 36

Cache-
Control:

max-age Coordinator Defines Resource lifetime at cache server or Node Cache-Control: max-
age=86400

must-
revalidate Coordinator Forces cache server or Node to refresh Resource

when max-age is reached

Cache-Control: max-
age=86400, must-
revalidate

public Coordinator Permits caching even if HTTP authentication or
TLS is used.

Cache-Control: public

no-cache,
no-store Coordinator Skip cached representation and do not store any

part of the response.
Cache-Control: no-
cache, no-store

Table 6: Supported cache-response-directives

The Cache-control: no-cache, no-store cache directive is only used in response to the following
Coordinator API calls: LicAppJoinTriggerGet, LicAppLeaveTriggerGet, DeviceAuthTokenGet,
ResourcePropertyQuery and UserGet (when invoked with the DataSharing form of the invocation
URL). Note that it is also used in some API calls related to Security Tokens (see [DSecMech]). The
Coordinator may apply any of the other cache response directives defined in Table 6 in response to any
Coordinator API call.

Nodes SHOULD cache Coordinator Resources in local caches.

When retrieving resources from the Coordinator that are locally cached, Nodes and Devices SHALL
utilize HTTP cache validation per [RFC2616].

Collection Resources in the Coordinator (such as the RightsTokenList, StreamList or UserList) have
unique cache control processing requirements at the Coordinator. In particular, resource changes, policy
changes, client permission changes, etc. may invalidate any client caches, and the Coordinator must
consider such changes when evaluating conditional requests of the resource.

Any Resource that requires a Delegation Security Token will result in the HTTP Vary header to be
included in the response. This instructs a cache to include the listed headers when determining the
appropriateness of a cached representation (see [RFC2616] section 14.44). In this case, a response
would include:

Vary: Authorization

Other header values may also be included in the response Vary list if needed.

3.9 Request Methods

The following methods are supported by DECE resources. Most resources support HEAD and GET
requests but not all resources support PUT, POST or DELETE. The Coordinator does not support the
OPTIONS method.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 37

3.9.1 HEAD

To support cache validation in the presence of HTTP proxy servers, all DECE resources SHOULD support
HEAD requests.

3.9.2 GET

A request with the GET method returns an XML representation of that resource. If the URL does not
exist, an HTTP 404 status code (Not Found) is returned. If the representation has not changed and the
request contained supported conditional headers, the Coordinator SHALL respond with an HTTP 304
status code (Not Modified). Some APIs are provided for non real-time processing, or require post
processing after a request is received, and will return a 202 status code (Accepted).

3.9.3 PUT and POST

The HTTP PUT method may be used to create a resource when the full resource address is known in
advance of the request’s submission, or to update an existing resource by completely replacing it.
Otherwise, the HTTP POST will be used when creating a new resource. The HTTP PUT request SHALL be
used in cases where a client has control over the resulting resource URI. The POST method SHALL NOT
be used to update a resource. Unless specified otherwise, all resource creations at the Coordinator are
requested via the POST method.

If a request results in the creation of a resource, the HTTP response status code returned SHALL be 201
(Created) and a Location header containing the URL of the created resource. Otherwise, successful
requests SHALL result in an HTTP 200 status code (OK) or HTTP 202 (Accepted). Update requests may
require post-processing by the Coordinator, in which case, an HTTP 202 status code (Accepted) SHALL be
returned.

The structure and encoding of the request depends on the resource. If the content-type is not supported
for that resource, the Coordinator SHALL return an HTTP 415 status code (Unsupported Media Type). If
the structure is invalid, an HTTP 400 status code (Bad Request) SHALL be returned. The server SHALL
return an explanation of the reason the request is being rejected. Such responses are not intended for
end users. Clients that receive 400 status codes SHOULD log such requests and consider such errors
critical. When updating resources, the invoking Node SHALL provide a fully populated resource (subject
to restrictions on certain attributes and elements managed by the Coordinator).

3.9.4 DELETE

The Coordinator SHALL support the invocation of the HTTP DELETE method on resources that may be
deleted by clients, based on authorizations governed by the Node’s Role, the presented Security Token,
and the Node’s certificate. An HTTP DELETE request might not necessarily remove the resource from the

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 38

database immediately, in which case the response would contain an HTTP 202 status code (Accepted).
For example, a delete action may require some other action or confirmation before the resource is
removed, In compliance with [RFC2616], the use of the 202 status code should enable API clients to
track the status of a request.

3.10 Request Encodings

Coordinator services SHALL support the request encodings supported in XML response messages. The
requested response content-type need not be the same as the content-type of the request. For various
resources, the Coordinator MAY broaden the set of accepted requests to suit additional clients. This will
not necessarily change the set of supported response types. All POST and PUT requests SHALL include a
Content-Type header with a value of application/xml, and SHALL otherwise conform to the encodings
specified in [RFC2616].

3.11 Coordinator REST URL

To optimize request routing, the Coordinator baseURL shall be separately defined for query operations
(typically using the HTTP GET method) and provisioning operations (typically using POST or PUT
methods).

For this version of the specification, the baseURL for all APIs is:

[baseHost] = DGEO_API_DNSNAME

[versionPath] = /rest/2015/02

[iHost] = q.[baseHost]

[pHost] = p.[baseHost]

 [bHost] = b.[baseHost]

[cHost] = c.[baseHost]

[baseURL] = https://[pHost|iHost|bHost][versionPath]

For Nodes, query requests (using the HTTP GET or HEAD method) SHALL use the [iHost] form of the URL
unless specifically noted in the API definition. All other requests SHALL use the [pHost] form of the URL
POST, PUT, DELETE).

The [bHost] is equivalent in all respects to the [pHost] but is intended for non-live activities performed
by Nodes on behalf of Users. For example, APIs that support the LastModified filter or perform
RightsToken maintenance.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 39

The [cHost] is dedicated to consent related queries (see [DGEO]).

The [sHost] is dedicated to security related queries (see [DSecMech]).

The Coordinator will manage the distribution of service invocations using the HTTP 307 status code
(Temporary Redirect) rather than 302 (Found). This enables temporary service relocation without
disruption. The Coordinator SHALL redirect the request to hosts within the baseHost definition. API
clients SHALL verify that that all redirections remain within the DNS zone or zones defined in the
DGEO_API_DNSNAME. Clients SHALL obtain a set of operational baseURLs that may include additional or
alternative baseURLs as specified in section 3.12.

If resource invocations of the incorrect HTTP method are received by the Coordinator, a 405 status code
(Method Not Supported) will be returned. Finally, if the resource invocation cannot be satisfied because
of a conflict with the current state of the requested resource, the Coordinator will respond with a 409
status code (Conflict). The requester might be able to resolve the conflict and resubmit the request.

3.11.1 Coordinator REST URL Parameter Encoding

Most Coordinator Resources incorporate well-known parameters in path segments or query parameters
values of the Resource location (for example the {AccountID} in
[BaseURL]/Account/{AccountID}/RightsToken/List). Some of these parameters may include
characters from the reserved character set (see definition below). Clients SHALL percent-encode such
arguments before de-referencing the resource to preserve its integrity.

The reserved character set, in the context of the Coordinator, is composed of the following characters:
"%" / "/" / "?" / "#" / "[" / "]" / "@" / "!" / "$" / "&" / "'" / "(" / ")" / "*" / "+" / "," / ";" / "="

The percent-encoded values of this character set is defined below:

% / ? # [] @ ! $ & ' () * + , ; =

%25 %2F %3F %23 %5B %5D %40 %21 %24 %26 %27 %28 %29 %2A %2B %2C %3B %3D

Below are 3 examples highlighting the percent-encoding of parameters (underlined and bold):

https://q.uvvu.com/rest/2015/02/Account/urn:dece:accountid:org:dece:D4
0A4402AD/RightsToken/List

https://p.uvvu.com/rest/1/06/Asset/Metadata/Basic/urn:dece:cid:eidr-

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 40

s:4E04-87A5-2C1F-CA5B-M

https://q.uvvu.com/rest/1/06/Account/urn:dece:accountid:org:dece:D40A4
402AD/User/List?
response=reference&filterclass=urn:dece:type:viewfilter:userbuyer

3.12 Coordinator URL Configuration Requests

The Coordinator SHALL publish any additional API baseHost endpoints by establishing, within the DECE
DNS zone, one or more SRV resource records as follows:

_api._query._tcp.[baseHost]

_api._provision._tcp.[baseHost]

The additional resource record parameters are as defined in [RFC2782], for example:

_Service._Proto.Name TTL Class SRV Pr W Port Target

_api._query._tcp.decellc.com. 86400 IN SRV 10 60 5060 i.east.coordinator.decellc.com.

_api._query._tcp.decellc.com. 86400 IN SRV 20 60 5060 i.west.coordinator.decellc.com.

_api._provision._tcp.decellc.com. 86400 IN SRV 10 60 5060 p.east.coordinator.decellc.com.

_api._provision._tcp.decellc.com. 86400 IN SRV 20 60 5060 p.west.coordinator.decellc.com.

The response resource record SHALL be from the same DNS zone second-level name. The published DNS
zone file SHOULD be signed as defined in [DNSSEC]. Resolving clients SHOULD verify the signature on the
DNS zone.

3.13 DECE Response Format

All responses SHALL include:

For all responses:

A custom HTTP Header x-Transaction-Info, which will include the following white space delimited
values:

o t=[time expressed as seconds from epoch the response was processed]

o a DECE-unique transaction id string no larger than 48 bytes

o the nodeID of the API client

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 41

o the IP address of the API client

This header, in particular, the transactionID, may be useful when involved in customer support
activities and during Coordinator client developement.

For example (newline for formatting purposes only):

x-Transaction-Info: t=1319570830469360 hpso8ApbMosAAGMt6kYAAAAW
urn:dece:org:org:dece:test:acmestore:retailer 10.1.2.3

For 200 status codes:

• A valid Coordinator Resource

• A Location header response (in the case of some new resource creations)

• No additional body data (generally, as a result of an update to an existing resource)

For 300 status codes:

• The Location of the resource

HTTP error status codes (4xx or 5xx) SHOULD include an Error object, with URI and a textual description
of the error. A detailed description of each response is provided in section 3.14.

3.13.1 Compression

A request may indicate support for gzip compression, in the response, by setting the Accept-
Encoding HTTP request header as defined in [RFC2616].

The Coordinator supports the content encodings "gzip" and "compress" defined in [RFC2616] section 3.5
for resources of the types application/xml.

Other content types may be supported, but HTTP headers will instruct the client as to whether the
Coordinator response is encoded, if an encoded response was requested by the client.

3.14 HTTP Status Codes

All responses from the Coordinator will contain HTTP1.1-compliant status codes. This section details
intended semantics for these status codes and recommended client behavior.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 42

3.14.1 Informational (1xx)

The current version of the Coordinator does not support informational status requests for any of its
resources.

3.14.2 Successful (2xx)

200 OK
This response message means that the request was successfully received and processed. For requests
that result in a change to the identified resource, the client can safely assume that the change has been
committed.

201 Created
For requests that result in the creation of a new resource, clients should expect this status code (instead
of 200) to indicate successful resource creation. The response message SHALL also contain a Location
header field indicating the URL for the created resource. If the request requires further processing or
interaction to fully create the resource, a 202 response will be returned.

202 Accepted
This status code will be used to indicate that the request has been received but is not yet complete, for
example, updating image references in Basic Metadata. All resource groups that use this status code for
a specific method will indicate this in their description. In each case, a separate URL may be specified
that can be used to determine the status of the request.

203 Non-Authoritative Information
The Coordinator will not return this header, but intermediary proxies may do so.

204 No Content
Clients should treat this status code the same as a 200 response, but without a message body. There
may be updated headers.

205 Reset Content
The Coordinator does not have a need for this status code.

206 Partial Content
The Coordinator does not use Range header fields, and thus has no need for this status code.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 43

3.14.3 Redirection (3xx)

Redirection status codes indicate that the client should visit another URL to obtain a valid response for
the request. W3C guidelines recommend designing URLs that do not need changing and thus do not
need redirection.

300 Multiple Choices
The requested resource corresponds to any one of a set of representations, each with its own specific
location, and agent- driven negotiation information (section 12) is being provided so that the user (or
user agent) can select a preferred representation and redirect its request to that location.

The Coordinator only uses this status code in the context of the ResourcePropertyQuery API.

301 Moved Permanently
This status code shall be returned if the Coordinator moves a resource. Clients are STRONGLY
RECOMMENDED to remove any persistent reference to the resource, and replace it with the new
resource location provided in the Location header.

302 Found
The Coordinator will not use this status code for resource location changes. Instead, status codes 303
and 307 will be used to respond to redirections. The Coordinator does use the status code for certain
special resource operations, where its use and meaning will be clearly documented.

303 See Other
The Coordinator will use this status code to indicate that the response will be found at another URI
(using an HTTP GET method).

307 Temporary Redirect
If a resource has been temporarily moved, this response shall be used to indicate its temporary location.
Clients SHALL attempt to access the resource at its original location in subsequent requests.

304 Not Modified
It is STRONGLY RECOMMENDED that clients perform conditional requests on resources. Clients
supporting conditional requests SHALL handle this status code to support response caching.

305 Use Proxy
If edge caching is used by the Coordinator, then unauthorized requests to the origin servers might result
in this status code. Clients SHALL handle 305 responses, as they may indicate changes to Coordinator
topography, service relocation, or geographic indirections.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 44

3.14.4 Client Error (4xx)

400 Bad Request
This status code is returned whenever the client sends a request using a valid URI path, which cannot be
processed due to a malformed query string, header values, or message content. The Coordinator SHALL
include a description of the issue in the response and the client should log the error. This description is
not intended for end users, and may be used to submit a support issue.

401 Unauthorized
A 401 status code means a client is not authorized to access the requested resource. Clients making a
request where the Security Token does not meet specified criteria, or where the user represented by
the Security Token is not authorized to perform the requested operation, can expect to receive this
response. The Coordinator SHALL respond with an HTTP WWW-Authenticate header as specified in
[HTTP11] section 10. Security Token profiles in [DSecMech] specify the appropriate challenge responses.

402 Payment Required
The Coordinator has no need for this status code.

403 Forbidden
The Coordinator will respond with this code where the identified resource is never available to the
client, for example, when the resource requested does not match the provided Delegation Security
Token.

404 Not Found
This status code indicates that the Coordinator does not understand the resource targeted by the
request.

405 Method Not Supported
This status code is returned (along with an Allows header) when clients make a request with a method
that is not allowed. It indicates a defect in either the client or the server implementation.

406 Not Acceptable
The Coordinator will not use with this status code. Such responses indicate a misconfigured client.

407 Proxy Authentication Required
The client must first authenticate with the proxy before gaining access to the resource.

408 Request Timeout
The Coordinator may return this code in response to a request that took too long.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 45

409 Conflict
The request could not be fulfilled because of a conflict with the current state of the targeted resource.
The 409 status code indicates that the requester may be able to resolve the conflict and resubmit the
request.

410 Gone
The Coordinator may return this status code for resources that can be deleted. A status code of 410 can
be sent to indicate that the resource is no longer available.

411 Length Required | 416 Requested Range Not Satisfiable
The Coordinator does not use Range header fields, and thus has no need for these status codes.

412 Precondition Failed
This status code should only be sent when a client sends a conditional PUT, POST or DELETE request.
Clients should notify the user of the conflict and provide options to resolve it.

413 Request Entity Too Large | 414 Request-URI Too Long
The Coordinator has no need for either of these codes.

415 Unsupported Media Type
If the content-type header of the request is not understood, the Coordinator will return this code. This
indicates a defect in the client.

417 Expectation Failed
The Coordinator has no need for this status code.

3.14.5 Server Errors (5xx)

When the Coordinator is unable to process a client request because of server-side conditions, various
codes are used to communicate with the client.

500 Internal Server Error
If the server is unable to respond to a request for internal reasons, this status code will be returned.

501 Not Implemented
If the server does not recognize the requested method, it may return this status code. This response is
not returned for any of the supported methods.

503 Service Unavailable
This status code will be returned during planned server unavailability. The length of the downtime, if
known, will be returned in a Retry-After header. A 503 status code may also be returned if a client
exceeds request limits.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 46

502 Bad Gateway | 504 Gateway Timeout
The Coordinator will not reply to responses with this status code directly. Clients may receive this status
code from intermediary proxies.

505 HTTP Version Not Supported
Clients that make requests using versions of HTTP other than 1.1 may receive this status code.

3.15 Response Filtering and Ordering

The Coordinator supports range requests using the ViewFilterAttr-type. Range requests are
provided as query parameters to the following resource collections.

[BaseURL]/Account/{AccountID}/RightsToken/List

[BaseURL]/Asset/Metadata/Basic/List

[BaseURL]/Asset/Metadata/Digital/List

[BaseURL]/Asset/Map/List

The ViewFilter is used with a parameter identifying the property that will be used to filter the collection.

ViewFilter URI Description
urn:dece:type:viewfilter:userbuyer Filters the Rights Token collection such that the result set

includes only those resources that match the User in the
Security Token presented and the PurchaseUser in the
Rights Token. This only applies to the RightsToken
collections identified above.

urn:dece:type:viewfilter:lastmodifieddate Sorts the returned collection by decreasing update or
created date, then by resource ID. This ensures that the
most recent changes are always in the first response(s).

This filter is implicitly applied to requests for Rights
Tokens and metadata (basic, digital and logical assets)
lists. Including this filter is not an error for those
collections.

This filter SHALL NOT be applied to any other collections.

The OnOrAfter parameter is a date or a date and time expressed in [ISO 8601] format using the GMT
time zone). It is optional and can only be combined with the
urn:dece:type:viewfilter:lastmodifieddate filter class. When this parameter is present in the
request, the Coordinator’s response SHALL only contain resources that were updated on or after the
provided date. If this parameter is present in the request for RightsLockerDataGet requests (by

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 47

reference flavor ONLY), Coordinator SHALL return both active and deleted Rights Tokens in the
response.

The FilterCount parameter is a positive integer used to constrain the number of items in the
response collection. No more than FilterCount elements will be returned.

The FilterOffset parameter may be used to indicate the offset from the beginning of the present
request. FilterOffset is used in conjunction with FilterCount to iteratively query small groups of
elements. For instance, to request groups of 10, the first query would have FilterOffset=0 and
FilterCount=10 (note that FilterOffset may be omitted for the first request). The next request
would have FilterOffset=10 and FilterCount=10. Next, FilterOffset=20 and
FilterCount=10. And, so forth.

The FilterMoreAvailable property is a Boolean value that indicates whether there are results in the
collection that have not been returned. This value is TRUE when the total number of resources in the
collection is greater than FilterCount (if present) plus FilterOffset (if present).

When the Coordinator services a request for a collection, it SHALL respond with the portion of the entire
collection as indicated by the ViewFilterAttr-type attributes included in the query string. In such
cases, the ViewFilterAttr-type attributes will be set on the root element in the response to reflect
the data actually returned (e.g., the request exceeds the number of remaining resource). The
FilterClass used to order the response SHALL be
urn:dece:type:viewfilter:lastmodifieddate for RightsTokens and Asset lists.

The following illustrates the relationship of these parameters.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 48

Example 1: to create a range request for a Rights Locker, returning 10 items beginning at the 21st item,
the request would be:

[BaseURL]/Account/{AccountID}/RightsToken/List?FilterOffset=20&FilterCount=10

Example 2: following the above example, to create a range request returning the next 10 items, the
request would be:

[BaseURL]/Account/{AccountID}/RightsToken/List?FilterOffset=30&FilterCount=10

Example 3: to create a range request for Basic Assets, returning all asset (references) that were updated
or created after 2013-06-01, the request would be:

[BaseURL]/Asset/Metadata/Basic/List?FilterClass=urn:dece:type:viewfilter:lastmodifieddate&O
nOrAfter=2015-06-01

3.15.1 Additional Attributes for Resource Collections

Element Attribute Definition Value Card.

RightsTokenList,
BasicAssetList,
DigitalAssetList,
LogicalAssetList

 Collections of Resources

Each includes the
dece:ViewFilterAtt
r-type

 FilterClass Filtering performed to generate the
response

xs:anyURI 0..1

 FilterOffset FilterOffset indicates the offset from the
beginning of the present request.
An offset of ‘0’ indicates the beginning of
the domain. If not present, the implicit
value of FilterOffset is 0.

xs:nonNegativeInte
ger

0..1

 FilterCount The maximum number of resources in
the collection returned

xs:positiveInteger 0..1

 FilterMoreAvail
able

Indicates whether there are additional
results remaining.

xs:boolean 0..1

Table 7: Additional Attributes for Resource Collections

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 49

3.16 Entity Identifiers

Many Resources are assigned an identifier that is unique within the ecosystem. Those identifiers are
defined using the following definition:

Element Attribute Definition Value Card.

EntityID Identifiers of the
form urn:dece:* as
defined in Section
5 of [DSystem]

dece:EntityID-type restricts xs:anyURI
<xs:pattern value=”urn:dece:.*”/>

Table 8: EntityID-type definition

Coordinator API Specification Version 2.2

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 50

4 DECE Coordinator API Overview

This specification defines the interfaces used to interact with the Coordinator. The overall architecture,
the description of primary Roles, and informative descriptions of use cases can be found in [DSystem].

The Coordinator interfaces are REST endpoints, which are used to manage various DECE Resources and
Resource collections. Most Roles in the DECE ecosystem will implement some subset of the APIs
specified in this document.

The sections of this specification are organized by Resource type. API’s defined in each section indicate
which Roles are authorized to invoke the API at the Coordinator, indicate Delegation Security Token
requirements, the URL endpoint of the API, the request method or methods supported at that resource,
the XML structure which applies for that endpoint, and processing instructions for each request and
response. The “API Invocation by Role” table in Appendix A, provides an overview of the APIs that apply
to each Role.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 51

5 Policies

The Coordinator’s Policies describe access control and consent rules that govern the behavior and
responses of the Coordinator when it interacts with Nodes. These rules are applied to Users, Accounts
and Rights. Policies are concise and unambiguous definitions of allowed behavior. A Policy may be one
of three types: consent policies, User-age policies, or parental-control policies.

5.1 Policy Resource Structure

Policies are object-oriented, in the sense that Policies are defined as Policy objects that have classes (the
Policy class) and are instantiated as a Policy. The Policy Object is encoded in Policy-type, which is

defined in Table 10, below. The Policy resource contains the various components of a Policy.

5.1.1 Policy Resource

A Policy Resource is a URN that defines the scope of the Policy, that is, the Resource to which the policy
applies. For example, for a parental-control policy, the Resource is the established rating. Each policy
class defines the applicable Policy Resource or Resources that apply. For more information about the
Resources that each Policy class can be applied to, see section 5.5.

5.2 Using Policies

The Policy element is a structure maintained by the Coordinator. It governs Coordinator protocol
responses for the Resource it applies to. Other Roles may obtain certain Policies using the provided APIs
in order to ensure a consistent user experience.

Geography Policies may dictate default policies or mandatory policies (for example, mandatory Parental
Controls for children). Such policies will be created by the Coordinator when the applicable resource is
created (for example after UserCreate() of a child). Default policies may subsequently be modified,
mandatory policies SHALL NOT be removed, and any attempt to modify or remove them will result in an
error response. Mandatory policies are indicated with the Immutable attribute.

The Web Portal Role is exempt from all Consent Policy restrictions.

Consent Policies set by a Node may be deleted by that same Node, regardless of the presence of
ManageUserConsent.

5.3 Precedence of Policies

When more than one Policy applies to a resource request, they are evaluated in the following order:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 52

• Node-level policies (Requestor is a Node)

• Account-level policies (Resource is the Account)

• User-level policies (including parental-control policies)

Inheritance and mutual exclusiveness of the Policies are addressed in the descriptions of each Policy
class. For example, an EnableManageUserConsent Account-level policy would be evaluated before the
User-level ManageUserConsent policy would be evaluated.

When Policies are evaluated in cases where the Delegation Security Token is evaluated with an Account-
level security context (for example, when the requestor is any of the customer support Roles), User-level
Policies SHALL NOT be considered unless otherwise noted in the API. For example, Parental Control
Policies are not evaluated when the invoking node is one of the customer support role.

5.4 Policy Data Structures

This section describes the Policy resource model as encoded in the Policy-type complex type.

5.4.1 PolicyList-type Definition

The policy list collection captures all policies, including opt-in attestations. It is conveyed in the PolicyList
element, which holds a list of individual Policy elements (as defined in section 5.4.1).

Element Attribute Definition Value Card.

PolicyList dece:PolicyList-type

 PolicyListID A unique identifier for the
policy list. Used in resource
responses after the
creation of a set of policies
(that is, a POST with a
PolicyList in message body)

dece:EntityID-type 0..1

Policy Policy elements dece:Policy-type 1..n

Table 9: PolicyList-type Definition

5.4.2 Policy Type Definition

The following table describes the Policy-type complex type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 53

Element Attribute Definition Value Card.

 PolicyID This unique identifier of the Policy is used
when referring to an established policy in
protocol messages. It is a
Coordinator-defined value, and is therefore
omitted from the PolicyCreate messages.
It SHALL NOT be altered by PolicyUpdate()
messages.

xs:anyURI 0..1

 Immutable A boolean indication of whether the Policy
can be altered, typically, as a result of a
Geography Policy. Its default value is false.

xs:boolean 0..1

PolicyClass Policy Classes are defined in section 5.5
If the request body of an API includes a
PolicyList, it SHALL always include PolicyClass.
It is provided as optional exclusively for the
support of Security Token bindings.

dece:EntityID-type 0..1

Resource The Resources that each Policy Class can be
applied to are listed in section 5.5.

xs:anyURI 0..n

RequestingEntity The identifier of the User ,Node or
Organization making the request (for
example, a user who is trying to view the title
of a digital asset). If absent or NULL, the policy
applies to all requesting entities. If several
requesters are identified, the policy applies to
each of them.
Note: RequestingEntity in the case of a Node
means the Node to which the policy applies,
not necessarily the Node calling the API.

dece:EntityID-type 0..n

PolicyAuthority The identifier of the policy decision point,
which is currently the Coordinator.

dece:EntityID-type
defaults to
urn:dece:role:coord
inator

0..1

ResourceStatus Information about the status of the policy,
see section 17.2.

dece:ResourceStatus
-type

0..1

Table 10: Policy Type Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 54

5.5 Policy Classes

The policy classes define each policy. They determine its evaluation criteria, which are characterized by a
set of rules and a rule-composition algorithm.

Policies Classes are expressed as URNs [RFC3986] of the form:

urn:dece:type:policy: + ClassString

where:

ClassString is a unique identifier for a Policy class.

The availability of policy classes and their evaluation criteria may be modified by Geography Policies (see
[DGeo]). Implementations should consult any applicable Geography Policy to ensure adherence to local
jurisdictional requirements.

Some consent policies below have corresponding resources detailing the nature of the consent (for
example, the terms of use). Since these may vary according to jurisdiction, [DGeo] appendices will
specify the precise resource location for each policy class, which will conform to the resource location
pattern defined in section 5.5.3.

5.5.1 Account Consent Policy Classes

Consent policy classes describe the details of the consents granted by or to Accounts and Users.
Account-level consent policies, when in place, apply to named resources within an Account. When the
last remaining Full Access User’s Delegation Security Token is revoked or expired for a Node, the
Coordinator deletes any corresponding Account-level policies.

The following policy consents for Roles Portal[:customersupport],
Coordinator[:customersupport] and dece:customersupport shall be implicitly evaluated as
“true”:

• LockerViewAllConsent

• EnableUserDataUsageConsent
• EnableManageUserConsent

• ManageAccountConsent

Implicit evaluation means that there will be no instantiation of these policies; rather, when one of these
Roles’ invocation of a Coordinator API is being processed, any operation dependent on the presence of
one of these policy consents shall be considered to have the policy set even though such an instantiation
may not exist.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 55

5.5.1.1 LockerViewAllConsent

Class Identifier: urn:dece:type:policy:LockerViewAllConsent

Resource: One or more Rights Lockers associated with the Account (identified by RightsLockerID).

RequestingEntity: One or more entities that requested the policy’s application (identified by NodeID or
OrgID).

PolicyCreator: The User who provided consent (identified by UserID).

Description: This policy indicates a full access User has consented to the entity identified in the
RequestingEntity obtaining all items in the Rights Locker (while still evaluating other policies which may
narrow the scope of the access to the locker). The Resource for policies of this class SHALL be one or
more RightsLockerIDs associated with the Account. The PolicyCreator is the UserID of the User who
instantiated the policy. When establishing a link (represented by a Delegation Security Token) with any
LASP role, this Policy SHALL be automatically created by the Coordinator, enabling LASPs to provide
basic streaming services. Without it, the LASP Node would not be able to verify the existence of any
Rights Tokens in a Rights Locker.

5.5.1.2 EnableUserDataUsageConsent

Class Identifier: urn:dece:type:policy:EnableUserDataUsageConsent

Resource: One or more Users associated with the household Account (identified by UserID).

RequestingEntity: One or more entities that requested the policy’s application (identified by NodeID or
OrgID).

PolicyCreator: The user who provided consent (identified by UserID).

Description: This policy indicates that a full-access user has consented to enabling users within the
Account to establish urn:dece:type:policy:UserDataUsageConsent policies on their own User
Resource. For more information about the UserDataUsageConsent policy, see section 5.5.2.2.

5.5.1.3 EnableManageUserConsent

Class Identifier: urn:dece:type:policy:EnableManageUserConsent

Resource: One or more Users associated with the Account (identified by UserID).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 56

RequestingEntity: One or more entities that requested the policy’s application (identified by NodeID or
OrgID).

PolicyCreator: The user who provided consent (identified by UserID).

Description: This policy indicates that a full-access user has consented to enabling users within the
Account to establish urn:dece:type:policy:ManageUserConsent policies on their own User
Resource. For more information about the ManageUserConsent policy, see section 5.5.2.1.

It also allows the entity identified in the RequestingEntity to perform write operations on the identified
User resource. This policy is required to enable creation and deletion of Users by any Role other than
the Web Portal.

5.5.1.4 ManageAccountConsent

Class Identifier: urn:dece:type:policy:ManageAccountConsent

Resource: The Account (identified by AccountID).

RequestingEntity: One or more entities that requested the policy’s application (identified by NodeID or
OrgID).

PolicyCreator: The user who provided consent (identified by UserID).

Description: This policy indicates that a full access user has consented to allow the entity identified in
the RequestingEntity element to manage Account information, including the creation of new Users in
the Account.

5.5.2 User Consent Policy Classes

User-level consent policies apply to an identified User resource. Typically, the PolicyCreator value should
be the UserID of the User to which the policy applies. Some implementations, however, may allow a
User in the Account to create consent policies on another User’s behalf.

The following policy consents for Roles Portal[:customersupport],
Coordinator[:customersupport] and dece:customersupport shall be implicitly evaluated as
“true”:

• ManageUserConsent

• UserDataUsageConsent
• UserLinkConsent

Implicit evaluation means that there will be no instantiation of these policies; rather, when one of these
Roles’ invocation of a Coordinator API is being processed, any operation dependent on the presence of

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 57

one of these policy consents shall be considered to have the policy set even though such an instantiation
may not exist.

5.5.2.1 ManageUserConsent

Class Identifier: urn:dece:type:policy:ManageUserConsent

Resource: One or more Users (identified by UserID).

RequestingEntity: One or more entities that requested the policy’s application (identified by NodeID or
OrgID).

PolicyCreator: The user who provided consent (identified by UserID).

Description: This policy indicates that a user has consented to allow the entity identified in the
RequestingEntity element to update and delete the identified User resource. It requires the prior
application of the Account-level EnableManageUserConsent policy. The deletion of the last remaining
ManageUserConsent policy in an Account MAY result in the deletion of the ManageAccountConsent
policy for the Node (see [DGeo] section 2.6.5).

5.5.2.2 UserDataUsageConsent

Note: This policy class is no longer in use.

Class Identifier: urn:dece:type:policy:UserDataUsageConsent

Resource: One or more Users (identified by UserID) and zero or more Rights Lockers (identified by
RightsLockerID).

RequestingEntity: One or more entities that requested the policy’s application (identified by NodeID or
OrgID).

PolicyCreator: The user who provided consent (identified by UserID).

Description: This policy indicates that a user has consented to allow the identified entity to use the
named resources’ data for marketing and other purposes. The UserDataUsageConsent policy does not
influence the Coordinator’s response to a Node. It requires the prior application of the Account-level
EnableUserDataUsageConsent policy.

5.5.2.3 TermsOfUse

Class Identifier: urn:dece:type:policy:TermsOfUse

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 58

Resource: The legal agreement and version identifier.

RequestingEntity: The user on whose behalf consent was provided (identified by UserID). This is
frequently, but not always the same as the User identified in the PolicyCreator element.

PolicyCreator: The user who accepted the agreement (identified by UserID).

Description: This policy indicates that a user has agreed to the DECE terms of use. The Resource
identifies the precise legal agreement and version that was acknowledged by the user. This identifier is
managed by DECE. The presence of this policy is mandatory, and certain operations related to Content
consumption (Rights acquisition and streaming) will be forbidden until this policy has been established.

The text of the Terms of Use and Privacy Policy may be updated with or without requiring Users to
accept the new version. Acceptance by a User of an updated Terms of Use/Privacy Policy SHALL be
recorded as a new TermsOfUse policy resource. The value of the Resource element is the URL referring
to the TermsOfUse accepted by the User.

The ability of Nodes other than the Web Portal to set this Policy is determined by applicable policies
prescribed in [DGeo].

5.5.2.4 UserLinkConsent

Class Identifier: urn:dece:type:policy:UserLinkConsent

Resource: A User (identified by UserID).

RequestingEntity: One or more entities that requested the policy’s application (identified by NodeID or
OrgID).

PolicyCreator: The User who provided consent (identified by UserID).

Description: This policy indicates that a user has consented to allow the identified entity to establish a
persistent link between a Node and the Coordinator-managed User resource.

The Web Portal Role operated by the Coordinator is granted this policy implicitly and it cannot be
removed.

Link consent SHOULD be granted at Organization level, by providing an OrgID in the
RequestingEntity element. Granting this policy to an Organization will grant access to any Node
that is mapped to that Organization.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 59

Any Node MAY create or delete UserLinkConsent for itself and for other Nodes in the same
Organization. Any Node, with appropriate Account Management consent, MAY create or delete
UserLinkConsent for any other Node.

UserLinkConsent is independent of other Consent Policies (e.g., ManageUserConsent).

The presence of the UserLinkConsent policy affects the duration of Delegation Security Tokens (see
[DSecMech] 4.3.2.1). Changes to the Delegation Security Tokens (creation, revocation, expiration, etc.)
have no effect on the UserLinkConsent policy. In case of affiliated nodes that share the same Delegation
Security Token, when the UserLinkConsent policy is deleted for a Node, the Coordinator SHALL NOT
revoke the corresponding Delegation Security Token until the last UserLinkConsent policy for any
affiliated node is deleted.

5.5.2.5 Connected Legal Guardian Attestation Policy

To record the attestation of a Connected Legal Guardian, the Connected Legal Guardian Attestation Policy
defined below MAY be required in accordance with the applicable Geography Policy document. The CLG
attestation policy SHALL be created on any User which has a LegalGuradian element set.

Applicability of this policy class is goverened by jurisdictional requirements. Geography Policy
documents will indicate when this policy is required, and the conditions of its use. Typically, it
will apply to Users under the DGEO_AGEOFMAJORITY defined in a Geography Policy document.

Class Identifier: urn:dece:type:policy:CLGAttestation

Resource: The UserID of the Child or Youth User for whom the CLG Attestation policy applies

RequestingEntity: null

PolicyCreator: The Connected Legal Guardian User who attests to being the Connected Legal
Guardian (identified by UserID).

Description: Indication that the User identified in the PolicyCreator element attests to being the
Connected Legal Guardian. Geography Policy documents will specify when this policy must be created
for a User.

5.5.2.6 Special Geographic Privacy Assent Policy Class definition

The Special Geographic Privacy Assent policy class is a general policy class which may be employed by
Geography Policy documents to indicate extreme privacy requirements must be enforced, and records
the acknowledgement of notification to the PolicyCreator. The applicable processing rules for the
application of this policy are defined in Geography Policy documents, and the proper geography is
determined by the User or Account-level Country and/or regional properties for the User or Account. For

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 60

example, in the United States, this policy may be used to indicate that necessary COPPA notification
obligations have been fulfilled and acknowledged by the Connected Legal Guardian.

Class Identifier: urn:dece:type:policy:GeoPrivacyAssent

Resource: The User to whom the special restrictions apply and assent was required (identified by
UserID).

RequestingEntity: null

PolicyCreator: The User who provided the assent (identified by UserID).

Description: Indication that the assent obligations have been completed by the authorized User. Some
Users shall be required to have this policy in place in order for a User to be considered active and
available for use. The applicable Geography Policy document will specify which Users may be impacted,
and the processes for obtaining assent.

5.5.2.7 DataSharingConsent

Class Identifier: urn:dece:type:policy:DataSharingConsent

Resource: A User (identified by UserID).

RequestingEntity: One or more entities that requested the policy’s application (identified by NodeID or
OrgID).

PolicyCreator: The user who provided consent (identified by UserID).

Description: This policy indicates that a user has consented to share a limited amount of data (to enable
a licensee to create an Account using data from the Coordinator). This consent can only be manipulated
(CREATE, GET, DELETE, UPDATE) by the Coordinator during a Federation Security Token request, as
allowed for by [DGeo] or by the urn:dece:role:dece:customersupport Role (GET).
DataSharingConsent is recorded at the Coordinator for tracking purposes but is not displayed at the
Web Portal or in any other UI.

5.5.2.8 AdditionalEmailConsent

Class Identifier: urn:dece:type:policy:AdditionalEmailConsent

Resource: A User (identified by UserID).

RequestingEntity: SHALL be DECE Org only (identified by OrgID urn:dece:org:org:dece:o:dece).

PolicyCreator: The user who provided consent (identified by UserID).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 61

Description: This policy indicates that a User has consented to participate in email-based education and
survey campaigns by the entity identified in the RequestingEntity. The Resource for policies of this class
SHALL be the User identified in the presented Delegation Security Token.

This policy may be created at any time and it can be removed any time. There are no dependencies on
any other consent policies. This policy is not evaluated by the Coordinator nor does it have any effect on
any of the current processes in the Coordinator, including user notifications.

Retailers, LASPs, AccessPortal Roles and their customersupport specialization MAY collect this policy on
behalf of DECE.

[DGeo] will indicate if this policy is disallowed in specific geographies. The Coordinator will only enforce
cases where the region prohibits this policy.

No notification email should be generated by Coordinator when this policy is created, deleted, or
updated.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 62

5.5.3 Obtaining Consent

5.5.3.1 Obtaining Consent at the Coordinator

Consent should occur with direct interaction between a User and the Coordinator. To obtain consent at
the Coordinator, the Node SHOULD establish an authenticated request through the Users browser or
other HTTP user-agent. The methods and mechanisms for creating this request SHALL be defined by a
suitable Security Token Profile defined in [DSecMech].

Requesting Nodes SHOULD implement the same Security Token Profile employed for establishing
delegation with the Coordinator and that Node.

Both User-level and Account-level Consent policies may be requested at once. The Coordinator will
determine which policies are allowed to be established and agreed to by the User, based on the
identified Users Role, age, or other restriction which may be defined for policies.

When Nodes and Users cannot be combined in a manner requested in the request, the Coordinator will
attempt to reduce the combination in such a way to maximally honor the request. However, if the
combination includes multiple UserIDs in the Consent, the Coordinator may not be able to perform any
reasonable reduction, and will not attempt to collect the consent from the User, and instead return a
suitable Security token Profile error response.

Nodes might request Consent Policies in either the aggregate (group) form, as defined in the User
Interface Requirements appendix of the License Agreement or in a Geography Policy, however, the
Coordinator will allow a User to disaggregate the group, allowing individual selection of Policies. The
Coordinator always respond with a PolicyList including references to the individual policies the User
chose, even in the case where the User chose to accept the aggregated request.

5.5.3.2 Obtaining Consent at a Node

In some jurisdictions, Nodes may collect consent directly from the User, and provision the applicable
policies. Geography Policies shall indicate whether this mode of consent collection is available for a
given jurisdiction. The profile shall indicate, in addition, which (if any) consent policies can be combined
in any fashion, or if each must be agreed to by the User individually.

To obtain consent, and to ensure consistent terms are provided to the User, the Coordinator shall
provide a set of well-known resource locations (URLs) that shall be used to deliver the applicable terms
and detailed language. These locations shall provide language-specific plain text and un-styled HTML
suitable for use in various implementations.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 63

The well known URL for the Terms Of Use Policy SHALL redirect to the permanent location of the most
recent policy language associated with the consent. Other well-known URLs such as Privacy Policy and
Cookie Policy SHALL provide the most recent policy language but do not redirect to a separate dated
version.

The well-known location is defined as follows:

[DGEO_TEXTBASE]/Consent/Text/{geo}[-{lang}]/{PolicyClass}/{format}/Current[/Short]

and the permanent location is as follows:

[DGEO_TEXTBASE]/Consent/Text/{geo}[-
{lang}]/{PolicyClass}+”:”+{versiondate}/{format}[/Short]

where:

• {geo} is the Geography Identifier as defined in the Appendixes of [DGeo]
• {lang} is an optional parameter that signals a preferred presentation language. Allowed values

only include those languages specified in the appendixes of [DGeo]. If not included, the language
is assumed to be en. Requests for invalid languages will result in an HTTP 404 Not Found
response.

• {PolicyClass} is the class identifier for the consent policy defined in section 5.5.1 and 5.5.2
• {versiondate} is the version of the {PolicyClass}. This versioned resource provides a

reference to the specific policy language accepted by the User. [DGeo] defines the specific version
dates, as required.

• {format} is either:
o text - a plain text, UTF-8 [UNICODE] representation of the Policy Class’ resource
o html - an HTML4 representation of the Policy Class’ resource

• Short may be optionally postpended to the initial URLto signal that the “short form” of the policy
text is desired. If /Short is included in the well-known location form (i.e. the form using
“../Current”), the server SHALL respond with a redirect to the then active policy resource /Short
form URL.

Nodes SHALL NOT use URLs with “/Short” in Policies that require a consent URL to be included in the
Resource element of a Policy.

When requesting the first form (“…/Current”), the response from this resource shall be a redirect to the
then active policy resource (e.g. the second form above). The Node SHALL use this second URL to
identify the consent policy version, as specified in sections 5.5.1 and 5.5.2.

An example for a Terms Of Use policy creation for a specific country:

<?xml version="1.0" encoding="UTF-8"?>
<dece:PolicyList xmlns:dece="http://www.decellc.org/schema/2015/03/coordinator">
 <dece:Policy>
 <dece:PolicyClass>urn:dece:type:policy:TermsOfUse</dece:PolicyClass>

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 64

<dece:Resource>https://c.uvvu.com/Consent/Text/us/urn:dece:type:policy:TermsOfUse:
20140811/html
 </dece:Resource>

<dece:RequestingEntity>urn:dece:userid:org:dece:ACED2DDA477DC85BE0401F0A0F994274</dece
:RequestingEntity>
 <dece:PolicyAuthority>urn:dece:role:coordinator</dece:PolicyAuthority>
 <dece:ResourceStatus>
 <dece:Current
CreatedBy="urn:dece:userid:org:dece:ACED2DDA477DC85BE0401F0A0F994274">
 <dece:Value>urn:dece:type:status:active</dece:Value>
 </dece:Current>
 </dece:ResourceStatus>
 </dece:Policy>
</dece:PolicyList>

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 65

5.5.4 Allowed Consent by User Access Level

The following table defines which User Level may set Policies within a Policy Class.

Policy Class Basic-Access Standard-Access Full-Access

LockerViewAllConsent N/A N/A Yes
EnableUserDataUsageConsent N/A N/A Yes
EnableManageUserConsent N/A N/A Yes
ManageAccountConsent N/A N/A Yes
ManageUserConsent Self Only Self Only Self Only
UserDataUsageConsent Self Only Self Only Self Only
TermsOfUse Self Only Self Only Yes
UserLinkConsent Self Only Self Only Self Only
DataSharingConsent Self Only Self Only Self Only

Table 11: Consent Permission by User Access Level

For each User Level, a Yes indicates that the policy may be set by that user; alternatively, an N/A
indicates that the policy may not be set (these policies apply to the entire Account). The notation Self
Only indicates that the policy may be set by that user, but applied only to that user’s own User resource.

5.5.5 Parental Control Policy Classes

Note: This section is subject to change. Nodes SHALL NOT create Parental Control Policies.

Parental Control policies SHALL identify the user for which the policy applies in RequestingEntity, and
identify the Rating Value as the Resource. The Coordinator performs no enforcement of parental control
policies. Their inclusion here is to make possible a shared parental control repository that may be shared
across Retailers and LASPs. By default, this specification defines no default Parental Control Policies.
The absence of any Parental Control Policies is equivalent to
urn:dece:type:policy:ParentalControl:NoPolicyEnforcement.

Geography Policies MAY specify default Parental Control Policies, mandatory Parental Control Policies,
or both. In such cases, the Coordinator SHALL create such policies when an applicable User is created.
Ratings-based policies created in such cases SHALL be of the Rating System prescribed by the applicable
Geography Policy. In addition, Geography Policies may specify default or mandatory policy settings for
urn:dece:type:policy:ParentalControl:BlockUnratedContent,
urn:dece:type:policy:ParentalControl:AllowAdult, and
urn:dece:type:rating:us:RIAA:ProhibitExplicitLyrics.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 66

5.5.5.1 BlockUnratedContent

Class Identifier: urn:dece:type:policy:ParentalControl:BlockUnratedContent

Resource: NULL

RequestingEntity: The User that the parental control applies to (identified by UserID).

PolicyCreator: The User that created the parental control policy (identified by UserID).

Description: This policy indicates that the identified User should not have access to content in the Rights
Locker which does not carry a rating corresponding to a ratings system for which the User has a Parental
Control setting, and should apply to viewing, purchasing and, in some cases, the playback of content in
the Rights Locker. The default policy for new users is to allow unrated content (that is, this policy is not
created by default when a new User is created). Whether this Policy is set to TRUE when a new User is
created is defined in the applicable Geography Policy.

This policy class is superseded by the application of the:
urn:dece:type:policy:ParentalControl:NoPolicyEnforcement policy.

5.5.5.2 AllowAdult

Class Identifier: urn:dece:type:policy:ParentalControl:AllowAdult

Resource: NULL

RequestingEntity: The User that the parental control applies to (identified by UserID).

PolicyCreator: The User that created the parental control policy (identified by UserID).

Description: This policy indicates that the identified User is allowed access to digital content whose
BasicAsset metadata has the AdultContent attribute set to TRUE. Whether this Policy is set to TRUE
when a new User is created is defined in the applicable Geography Policy.

5.5.5.3 RatingPolicy

Class Identifier: urn:dece:type:policy:ParentalControl:RatingPolicy

Resource: The rating system value identifier (defined below).

RequestingEntity: The User that the parental control applies to (identified by UserID).

PolicyCreator: The User that created the parental control policy (identified by UserID).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 67

Description: This policy indicates that a rating-based parental-control policy has been applied to a User.
This policy applies to the viewing and playing of content. Rating identifiers take the general form:

urn:dece:type:rating:{region}:{system}:{ratings}

Rating reasons are similarly identified as:

urn:dece:type:rating:{region}:{system}:{ratings}:{reason}

The defined values for these parameters correspond to the column headings of Section 8 in [MLRatings],
with the exception that the applicable ISO country codes in [ISO3166-1] SHALL be used.

Rating Policies may combine rating and reason identifiers to construct complex parental control policies.

When determining which rating systems to employ for the creation of Parental Controls, Nodes SHOULD
use systems matching the User’s Country value. Note that Nodes may choose from any available rating
systems.

These policies are non-inclusive when evaluating for authorization to a RightsToken based on the
Parental Control. That is, a policy with a Resource of urn:dece:type:rating:us:mpaa:pg13 would
only allow access to any MPAA rated content which is rated PG-13. To allow access to several ratings at
once, the policy must include each rating for the identified system (for example,
urn:dece:type:rating:us:mpaa:pg13, urn:dece:type:rating:us:mpaa:pg, as well as
urn:dece:type:rating:us:mpaa:g, to enable access to PG13 and below in the United States). This
eliminates ambiguities in interpretation when policies are evaluated. Parental Control user interfaces
may provide simplified controls for a better user experience. This policy class is superseded by the
application of the: urn:dece:type:policy:ParentalControl:NoPolicyEnforcement policy.

5.5.5.4 NoPolicyEnforcement

Class Identifier: urn:dece:type:policy:ParentalControl:NoPolicyEnforcement

Resource: NULL.

RequestingEntity: The User that the parental control applies to (identified by UserID).

PolicyCreator: The User that created the parental control policy (identified by UserID).

Description: This policy prohibits enforcement of any parental control policies for the identified User or
Users. This policy class applies to the purchase, listing, and playing of digital content.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 68

5.5.6 Policy Abstract Classes

All policy classes are defined in a hierarchical fashion, for example, the ParentalControl policy classes. To
facilitate a simpler interface to policy queries (that is, the PolicyGet API), the following abstract policy
class identifiers may be used:

• urn:dece:type:policy:ParentalControl -- Identifies all Parental Control policy classes
as defined in section 5.5.5

• urn:dece:type:policy:Consent -- Identifies all consent policy classes as defined in
sections 5.5.1 and 5.5.2.

5.5.7 Evaluation of Parental Controls

Note: This feature is no longer supported. It is retained here for historical purposes and potential
re-introduction in the future.

It is recommended that nodes implementing Parental Control enforcement do so using the algorithm
defined in [CMCRSchema] section 5.

5.5.7.1 RIAA Policies

Although there are no widespread content rating systems in the music industry, the Recording Industry
Association of America (RIAA) defines an Explicit Content label for music videos. Unlike the movie
industry, the Unrated Content label equates to universal availability. Because the RIAA rating system is
the sole representation of explicit content, its syntax differs from normal ratings-based policies.

Class Identifier: urn:dece:type:policy:ParentalControl:RatingPolicy

Resource: urn:dece:type:rating:us:RIAA:ProhibitExplicitLyrics

RequestingEntity: The User that the parental control applies to (identified by UserID).

PolicyCreator: The User that created the parental control policy (identified by UserID).

Description: This policy indicates that an explicit content parental-control policy has been applied to a
User for music or music videos. This policy applies to the viewing and playing of content.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 69

5.6 Policy APIs

5.6.1 PolicyGet()

5.6.1.1 API Description

The PolicyGet API can be invoked to obtain the details of any policy.

5.6.1.2 API Details

Path:

For User-level policies:

[BaseURL]/Account/{AccountID}/User/{UserID}/Policy/{PolicyID}|{PolicyListID}

[BaseURL]/Account/{AccountID}/User/{UserID}/Policy/{PolicyClass}

[BaseURL]/Account/{AccountID}/User/{UserID}/Policy/List

For Account-level policies:

[BaseURL]/Account/{AccountID}/Policy/{PolicyID}|{PolicyListID}

[BaseURL]/Account/{AccountID}/Policy/{PolicyClass}

[BaseURL]/Account/{AccountID}/Policy/List

Method: GET

Authorized Roles:

urn:dece:role:portal[:customersupport]
urn:dece:role:dece[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:accessportal[:customersupport]
urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]

When ManageAccountConsent is not set for a particular Node for a particular Account/User, all
forms of Policy Get requests made by that Node shall return policies limited to those set only for the
requesting Node or set for its parent Org corresponding to the same Account/User. . However, if the
ManageAccountConsent policy is set on the account for the requesting Node, all policies meeting
the criteria shall be returned.

*The Node’s access to the policy class is subject to the user’s access level, as defined in the following
table.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 70

Policy Class Ba
sic

 A
cc

es
s

St
an

da
rd

 A
cc

es
s

Fu
ll

Ac
ce

ss

LockerViewAllConsent Yes Yes Yes
EnableUserDataUsageConsent N/A N/A Yes
EnableManageUserConsent N/A N/A Yes
ManageAccountConsent N/A N/A Yes
ManageUserConsent Self Only Self Only Yes†‡
UserDataUsageConsent Self Only Self Only Yes†‡
TermsOfUse Self Only Self Only Yes†‡
UserLinkConsent Self Only Self Only Yes†‡
Parental Control Yes Yes Yes‡
NoPolicyEnforcement Yes† Yes† Yes†‡
AllowAdult Yes† Yes† Yes†‡

† The Node’s access to the policy class is allowed only if the
urn:dece:type:policy:ManageUserContent policy is set to TRUE.

‡ The policy class may be further restricted based on Geography Policies found in [DGeo] limiting access
to this policy class to the User’s Connected Legal Guardian.

Table 12: User Access Level per Role

 Request Parameters:

AccountID is the unique identifier for an Account

UserID is the unique identifier for a User

PolicyID is the unique identifier for a single Policy

PolicyListID is the unique identifier for a Policy collection (which was originally created as a list)

PolicyClass may be one of:

• A specific DECE policy class, for example: urn:dece:type:policy:ManageUserConsent

• A Policy Group URN defined in an applicable Geography Profile

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 71

• A policy abstract class, for example: urn:dece:type:policy:ParentalControl,

Security Token Subject Scope:

urn:dece:role:user:self

urn:dece:role:user:parent

Applicable Policy Classes: All

Request Body: None.

Response Body:

PolicyList or PolicyListFull.

Element Attribute Definition Value Card.

PolicyList See Table 9 dece:PolicyList-type

5.6.1.3 Behavior

The Coordinator responds with an enumeration of Policies with the identified PolicyClass, associated
with Account (as applicable), and associated with the identified User (as applicable). Parental controls
are only accessible if the ManageUserConsent policy is set to TRUE for the identified User.

The ManageUserConsent and ManageAccountConsent policies SHALL always evaluate to TRUE for the
Web Portal and DECE and Coordinator roles (and their associated customer support roles).

5.6.2 PolicyCreate(), PolicyUpdate(), PolicyDelete()

5.6.2.1 API Description

Policies cannot be altered by creating or updating the resource to which the policy has been applied (for
example, user-level policies cannot be updated using the UserUpdate API). Policies can be manipulated
only by invoking these APIs.

5.6.2.2 API Details

Path:

The following forms can be used for POST:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 72

[BaseURL]/Account/{AccountID}/Policy/{PolicyClass}

[BaseURL]/Account/{AccountID}/Policy/List

[BaseURL]/Account/{AccountID}/User/{UserID}/Policy/{PolicyClass}

[BaseURL]/Account/{AccountID}/User/{UserID}/Policy/List

The following forms can be used for PUT and DELETE:

[BaseURL]/Account/{AccountID}/Policy/{PolicyID}

[BaseURL]/Account/{AccountID}/User/{UserID}/Policy/{PolicyID}

Methods: POST | PUT | DELETE

Authorized Roles:

All policy classes may be manipulated using these APIs. The Consent Policy Classes may also be updated
through the Consent mechanism, described in section 5.5.3.

Role Pa
re

nt
al

 C
on

tr
ol

urn:dece:role:portal 1
urn:dece:role:portal:customersupport
urn:dece:role:dece:customersupport
urn:dece:role:retailer 1
urn:dece:role:retailer:customersupport 1
urn:dece:role:accessportal 1
urn:dece:role:accessportal:customersupport 1
urn:dece:role:lasp:linked 1
urn:dece:role:lasp:linked:customersupport 1
urn:dece:role:lasp:dynamic 1
urn:dece:role:lasp:dynamic:customersupport 1

1 Nodes may manipulate the listed policy on behalf of full-access Users only. This requires the
application of the Account-level EnableManageUserConsent policy as well as the ManageUserConsent

policy.

Request Parameters:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 73

AccountID is the unique identifier for an Account
UserID is the unique identifier for a User
PolicyID is the unique identifier for a single Policy

PolicyClass is a DECE Policy Class, Policy Group, or Policy abstract class URN, for example,
urn:dece:type:policy:ParentalControl

Security Token Subject Scope:

urn:dece:role:user:self
urn:dece:role:user:parent

Applicable Policy Classes:

ParentalControl Policy Classes (defined in section 5.5.5)

Request Body:

PolicyList is passed in GET and PUT request messages.

Element Attribute Definition Value Card.

PolicyList See Table 9 dece:PolicyList-type

A DELETE request message has no body.

Response Body: None.

5.6.2.3 Behavior

For PolicyCreate, Nodes SHALL NOT include a PolicyID attribute in a request. Nodes can create or update more
than one consent policy at a time for a single User by submitting a PolicyList, that includes a sequence of Policy
elements (one per consent policy class). When submitting multiple policies at once, if any individual policy cannot
be created or updated, the entire list fails, and an error is returned (Error ID to be added).

The DataSharingConsent policy SHALL ONLY be created by itself (not included in a list with other policies).

For PolicyUpdate, Nodes SHALL include the PolicyID as provided by the Coordinator when updating
existing Policies. If, as Part of the Update, additional Policies are being added, such new Policies SHALL
NOT include the PolicyID attribute.

Multiple requesting entities may be included for any Policy with the restriction that each requesting
entity value be from the same Organization as the requesting Node.

Resource Status, if included in the request body, shall be ignored. A Policy may only be deleted by use of
the PolicyDelete method. The Coordinator SHALL generate the appropriate PolicyIDs as required.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 74

The Coordinator responds with an enumeration of Policies with the identified PolicyClass, associated
with Account (as applicable), and associated with the identified User (as applicable).

• For PolicyCreate, if the Policy does not exist, it is created. If a Policy already exists in the
identified PolicyClass, an error is returned.

• For PolicyUpdate, if the Policy exists, the identified resource or resources are updated. If a Policy
does not exist in the identified PolicyClass, an error is returned. If the Policy element in the
update request contains no resources, an error is returned.

• For PolicyDelete, if the Policy exists, its Resource Status is set to deleted.

Parental controls are only accessible if the ManageUserConsent Account-level policy is set to TRUE,
allowing access to the requested User resource.

The ManageUserConsent policy SHALL always evaluate to TRUE for the Web Portal and DECE Role (and
their associated customer support roles), unless prohibited by a localized Terms Of Use (TOU), as
required by a Geography Policy. For more information about Geography Policy requirements, see
Appendix F.

Policy classes that depend upon the presence of other policies (for example, the
EnableManageUserConsent class) may be created, updated or deleted irrespective of the presence of
the dependant class, however, such policies will not have any effect until the parent policy class has
been established with the necessary scope. For example, if the EnableManageUserConsent policy class
is deleted, the subordinate ManageUserConsent policy class may remain in place. The policy evaluation
during API invocation of, for instance, UserUpdate, will result in a 403 Forbidden response, as the
absence of the EnableManageUserConsent policy class prevents access to the API.

Additional constraints are documented in the description of each Policy Class.

5.7 Consent Policy Dependencies and API availability

Figure 2 below documents the dependencies between consent policies. It also describes the set of APIs
that becomes available after a policy is set in the related Account.

This figure indicates that some Policies may be created automatically by the Coordinator, which is
determined by the Country property on the User, and the applicable Geography policy in [DGeo].
Automated policy creation, if any, SHALL occur when a Delegation Security Token is issued to the Node
for any User in the Account. Please check [DGeo].

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 75

Figure 2: Policy Dependence and Enabled APIs

Coordinator API Specification Version 2.2

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 76

5.8 Grace Periods for User Actions

DECE defines 2 main grace periods to help manage the lifecycle of user’s status. Each grace period is
associated with an ecosystem parameter defining its duration. The expiration of a grace period always
results in a status change for the User. The 2 grace periods are as follows:

• Terms Of Use Acceptance: this grace period defines the amount of time a newly created User
has to accept the DECE Terms Of Use. Its duration is represented by the
DGEO_TOU_ACCEPTANCE_GRACE_PERIOD ecosystem parameter as defined in [DGeo].

• Terms Of Use Update: this grace period defines the amount of time an existing User has to
accept a revision of the DECE Terms of Use. Its duration is represented by the
DGEO_TOU_UPDATE_GRACE_PERIOD ecosystem parameter as defined in [DGeo].

5.8.1 User Status and Grace Periods

The following figures describe various scenarios based on different values for the aforementioned grace
periods as well as initial User status. Each diagram shows the evolution of the User status that can be
triggered by either actions taken by the User or the expiration of a grace period.

For these figures, the terms Adult, Youth and Child are used as defined in [DGeo].

5.8.1.1 New Adult and Youth Users

In Figure 3, the TOU grace period is greater than 0, but is not exceeded.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 77

Figure 3: DGEO_TOU_ACCEPTANCE_GRACE_PERIOD > 0 – User accepts within the grace period

Figure 4: DGEO_TOU_ACCEPTANCE_GRACE_PERIOD > 0 – User accepts after the grace period

In Figure 5, the DGEO_TOU_ACCEPTANCE_GRACE_PERIOD is 0, and therefore, the User is created in a
blocked:tou status.

Figure 5: DGEO_TOU_ACCEPTANCE_GRACE_PERIOD is 0

5.8.1.2 TOU Change for Adult and Youth Users

In Figure 6, when the DGEO_TOU_UPDATE_GRACE_PERIOD is greater than 0, and the User accepts the
new TOU within the grace period, no status change will occur.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 78

Figure 6: DGEO_TOU_UPDATE_GRACE_PERIOD is > 0

However, in the case where the DGEO_TOU_UPDATE_GRACE_PERIOD is 0, all Users will enter the
blocked:tou status until the new TOU is accepted.

Figure 7: DGEO_TOU_UPDATE_GRACE_PERIOD is 0.

5.8.1.3 New Child User with Connected Legal Guardian

Some geographies may require additional policies, prohibit Child Users from accepting TOU and require
a Connected Legal Guardian (CLG). In this case, modeled after the US Geography Profile in [DGeo], the
CLG Attestation must occur prior to TOU acceptance (on behalf of the Child). In addition, the
GEOPrivacyAssent policy is required in order to fully activate the Child. In Figure 8, with an initial TOU

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 79

grace period (exceeded) of greater than 0, the Child moves through several inactive statuses prior to
becoming active.

Figure 8: When DGEO_TOU_ACCEPTANCE_GRACE_PERIOD is > 0 - Child User with CLG

In the case of a TOU grace period of 0, Figure 9 shows the initial state of blocked:tou, as with an
Adult, and still a pending status as before, until the GeoPrivacy Assent has been given.

Figure 9: When DGEO_TOU_ACCEPTANCE_GRACE_PERIOD is 0 - Child User with CLG

5.8.1.4 TOU Change for Child Users and their CLG

When TOU change occurs, in the presence of a Child and their CLG, both Users will be required to accept
the new TOU, with the CLG accepting first. In Figure 10, when there is a grace period, provided the CLG
accepts the TOU for themselves and the Child, they will both remain in the active status.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 80

Figure 10: TOU Change with Grace Period > 0 Child and CLG

Without a grace period, the CLG (as an Adult from above in Figure 7), the Child, however moves into a
blocked:clg status, because the CLG is no longer active. Once the CLG has accepted the new TOU,
the Child moves to blocked:tou, because the CLG is now active. Once the CLG accepts the TOU for
the Child, the child returns to the active status.

Figure 11 TOU Change with Grace Period of 0 Child and CLG

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 81

5.9 Policy Status Transistions

Figure 12: Policy Status Transitions

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 82

6 Assets: Metadata, ID Mapping and Bundles

An asset is a digital representation of content (films, television programs, video games, electronic books,
etc.); it is described to the system and its users using metadata—data about the data.

Note: All of the assets tend to be stable over time and as such are easily cacheable.Nodes SHOULD use
this information to establish a local cache of Basic/Digital/Logical Asset information. This supports
conditional requests using OnOrAfter and HTTP directives for quick and efficient queries to the
Coordinator to verify the asset information. Nodes SHOULD always query the Coordinator to verify the
local cache.

6.1 Metadata Functions

DECE metadata schema documentation may be found in the DECE Metadata Specification [DMeta].
Metadata is created, updated and deleted by Content Providers, and may be retrieved by the Web
Portal, Retailers, LASPs and DSPs.

The Coordinator SHALL enforce scheme-independent requirements for identifiers defined in [DSystem]
section 5.5. The Coordinator MAY support scheme-specific requirements for identifiers defined in
[DSystem] Section 5.5 and associated referenced specifications.

6.1.1 MetadataBasicCreate() and MetadataDigitalCreate()

6.1.1.1 API Description

These functions are used to create basic or digital asset metadata at the Coordinator.

6.1.1.2 API Details

Path:

[BaseURL]/Asset/Metadata/Basic

[BaseURL]/Asset/Metadata/Basic/{ContentID}

[BaseURL]/Asset/Metadata/Digital

[BaseURL]/Asset/Metadata/Digital/{APID}

Methods: POST (without parameters) | PUT (with parameters)

Authorized Roles:

urn:dece:role:contentprovider[:customersupport]

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 83

Request Parameters:

APID is the Asset Physical identifier for a digital asset
ContentID is the content identifier for Content.

Security Token Subject Scope: None

Opt-in Policy Requirements: None

Request Body:

For a Basic Asset:

Element Attribute Definition Value Card.

BasicAsset See Table 20 dece:AssetMDBasic-type

For a Digital Asset:

Element Attribute Definition Value Card.

DigitalAsset See Table 15 dece:DigitalAsset
Metadata-type

Response Body: None

6.1.1.3 Behavior

This creates a Basic Metadata or Digital Asset Metadata at the Coordinator. Content Providers SHALL
conform to the requirements defined in [DPublish] and [DMeta], and the Coordinator will enforce the
presence of the stated mandatory values.

These functions MAY return a 202 Accepted HTTP status code, as additional processing of the created
Resource may be required (for example, the verification and caching of image resources referenced in
the metadata). If no processing is required and no errors are encountered with the request, a 200 OK
HTTP status code will be returned, and the resource will be immediately available.

In some cases, such as viruses found, the Coordinator Customer Support Role may notify the Content
Provider if an error is unrecoverable.

Whenever a new image resource is provided as part of a new or updated Basic Metadata, the
Coordinator will perform several actions on the image resource. For each
BasicMetadata/LocalizedInfo/ArtReference element:

• Fetch the image from the provided URL

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 84

• Scan the image for viruses, and quarantine as necessary

For the set of images provided in BasicMetadata/LocalizedInfo/ArtReference elements

• If necessary image assets are absent, create missing image assets. This SHALL be in accordance
with [DMeta] Section 3.2.

• Publish all the image assets at Coordinator-controlled URLs

• Update the BasicMetadata/LocalizedInfo/ArtReference to reflect these new image locations

If the ArtReference is a Coordinator URL for an existing, different, asset, the Coordinator will establish a
new copy of that existing image, to provide the new asset with its own distinct URL, in order to avoid
inadvertant overwriting of images across assets. No additional virus scanning will be performed on such
images.

During concurrent metadata creation or update, the Coordinator SHALL support multiple usages of the
same Node–sourced image. This will permit Content Providers to, for instance, simultaneously register
or update a set of episodic assets that reference the same image.

 Note that it may take significant time to ingest images, especially if some resolutions need to be
generated by the Coordinator. The Content Provider can determine status using the GET APIs described
below.

Note: While re-provisioning ContentIDs, Coordinator SHALL increment the UpdateNum (to highest
UpdateNum +1) if the submitted UpdateNum is lower than the previously provisioned values for the
ContentId or if no UpdateNum is submitted. In such cases, Content Providers SHOULD perform
MetadataBasicGet to retrieve the latest UpdateNum to be used in the subsequent update requests.

6.1.1.4 MetadataBasicUpdate() and MetadataDigitalUpdate()API Description

These functions are used to update a Basic Metadata or Digital Asset Metadata at the Coordinator.
Updates consist of complete replacement of the metadata. There is no provision for updating individual
data elements.

6.1.1.5 API Details

Path:

[BaseURL]/Asset/Metadata/Basic/{ContentID}

[BaseURL]/Asset/Metadata/Digital/{APID}

Methods: PUT

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 85

Authorized Roles:

urn:dece:role:contentprovider[:customersupport]

Request Parameters:

APID is the Asset Physical identifier for a digital asset
ContentID is the content identifier for a digital asset.

Security Token Subject Scope: None

Opt-in Policy Requirements: None

Request Body:

For a Basic Asset:

Element Attribute Definition Value Card.

BasicAsset See Table 20 dece:AssetMDBasic-type

For a Digital Asset:

Element Attribute Definition Value Card.

DigitalAsset See Table 15 dece:DigitalAsset
Metadata-type

Response Body: None

6.1.1.6 Behavior

The entry matching the Asset identifier (ContentID or APID) identified in the resource endpoint is
updated. Updates may be performed only by the Node that created the asset.

Content Providers SHALL conform to the requirements defined in [DPublish] section 3.1, and the
Coordinator will enforce the presence of the stated mandatory values.

These functions MAY return a 202 Accepted HTTP status code, as additional processing of the updated
Resource may be required (for example, the verification and caching of image resources referenced in
the metadata).

In some cases, such as viruses found, the Coordinator Customer Support Role may notify the Content
Provider if an error is unrecoverable.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 86

Whenever a new image resource is provided as part of a new or updated Basic Metadata, the
Coordinator will perform several actions on the image resource. For each
BasicMetadata/LocalizedInfo/ArtReference element:

• Fetch the image from the provided URL

• Scan the image for viruses, and quarantine as necessary

For the set of images provided in BasicMetadata/LocalizedInfo/ArtReference elements

• If necessary image assets are absent, create missing image assets. This SHALL be in accordance
with [DMeta] Section 3.2.

• Publish all the image assets at Coordinator-controlled URLs

• Update the BasicMetadata/LocalizedInfo/ArtReference to reflect these new image locations

The Coordinator SHALL NOT process image resources when the ArtReference URL matches an
ArtReference element from a MetadataBasicGet() request.

If an update request is made while a previous update is in pending status (that is, any required post-
processing is still underway), the Coordinator will refuse to process the update request, and respond
with an HTTP status code of 404 Not Found.

Note that it may take significant time to ingest images, especially if some resolutions need to be
generated by the Coordinator. The Content Provider can determine status using the GET APIs described
below.

Note: MetadataBasicCreate and Update requests will accept RunLength values up to 32 bytes to allow
all practical values of run length (especially when describing the run length of an entire series of episodic
content). See Table 25.7

6.1.2 MetadataBasicGet, MetadataDigitalGet

6.1.2.1 API Description

These functions are used to retrieve a Basic Metadata or Digital Asset Metadata from the Coordinator.

6.1.2.2 API Details

Path:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 87

[BaseURL]/Asset/Metadata/Basic/{ContentID}[?updatenum={UpdateNumber}]

[BaseURL]/Asset/Metadata/Digital/{APID}

Methods: GET

Authorized Roles:

urn:dece:role[:dece:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:accessportal[:customersupport]
urn:dece:role:lasp[:customersupport]
urn:dece:role:contentprovider[:customersupport]
urn:dece:role:dsp[:customersupport]

Request Parameters:

APID is the Asset Physical identifier for a digital asset

ContentID is the content identifier for a digital asset.

UpdateNumber is an optional query parameter indicating the specific version of the Basic Asset.
UpdateNumber is only allowed for the Content Provider that created this resource. If a Node
provides UpdateNumber, an HTTP status 403 Forbidden is returned.

Security Token Subject Scope: None

Opt-in Policy Requirements: None

Request Body: None

Response Body: The Basic or Digital asset metadata (see below for more details on possible responses).

6.1.2.3 Behavior

Requests for Digital Assets simply return the Digital Asset resource. No special response status apply.

The response to a GET query on a Basic Asset metadata varies based on the requester’s Role (i.e.,
whether the requester is the creating Content Provider or another Node). The response will also depend
on whether the resource was just created or updated and whether it is being post-processed at the
moment of the request.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 88

For newly created Basic Metadata, the table below describes the possible responses based on the
requester’s Role and the progress of the post-processing:

Request
URL Form

Allowed
Role(s)

Response
post-processing completed post-processing not completed post-processing failed

(image error)

GET
../{ContentID} All Roles

HTTP 200 OK
<BasicAsset>
</BasicAsset>

HTTP 404 Not Found HTTP 404 Not Found

GET
../{ContentID}
?UpdateNum=1

Creating
Content
Provider

HTTP 200 OK
<BasicAsset UpdateNum=1>
</BasicAsset>

HTTP 200 OK
<BasicAsset UpdateNum=1>
 <ResourceStatus>
 …pending</>
</BasicAsset>

HTTP 409 Conflict
<ErrorList>
 Errors
</ErrorList>

Table 13: Responses for newly created Basic Assets

Following n successful updates on a Basic Asset, and a new update request m, the table below describes
the possible responses based on the requester’s Role and the progress of the post-processing. In the
following table ‘n’ and ‘m’ represent numbers, such as ‘0’, ‘1’ or ‘2’, where ‘m’ is greater than ‘n’.

Request
URL Form

Allowed
Role(s)

Response
post-processing completed post-processing not completed post-processing

failed (image error)

GET
../{ContentID} All Roles

HTTP 200 OK
<BasicAsset UpdateNum=m>
</BasicAsset>

HTTP 200 OK
<BasicAsset UpdateNum=n>
</BasicAsset>

HTTP 200 OK
<BasicAsset
UpdateNum=n>
</BasicAsset>

GET
../{ContentID}
?UpdateNum=m

Creating
Content
Provider

HTTP 200 OK
<BasicAsset UpdateNum=m>
</BasicAsset>

HTTP 200 OK
<BasicAsset UpdateNum=m>
 <ResourceStatus>
 <Current CreatedBy="…"
 CreationDate="xxx"
 ModificationDate="yyy"
 ModifiedBy="…">
 <Value>…:pending</>
 </Current>
 </ResourceStatus>
</BasicAsset>

HTTP 409 Conflict
<ErrorList>
 Errors
</ErrorList>

Table 14: Responses for updated Basic Assets

If an HTTP status code 409 Conflict is returned, the Content Provider can resubmit a corrected message
using the prior updateNum value (the one that failed), or they can increment the updateNum values as
they see fit.

6.1.3 MetadataBasicDelete(), MetadataDigitalDelete()

These APIs allow the Content Provider Role to delete basic and digital asset metadata.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 89

6.1.3.1 API Description

These functions are all based on the same template: a single Content identifier (either APID or
ContentID) is provided in the URL, and the status of the identified metadata is set to deleted.

6.1.3.2 API Details

Path:

[BaseURL]/Asset/Metadata/Basic/{ContentID}

[BaseURL]/Asset/Metadata/Digital/{APID}

Method: DELETE

Authorized role: urn:dece:role:contentprovider

Request Parameters:

APID is an Asset Physical identifier for a digital asset.
ContentID is a content identifier for a digital asset.

Request Body: None

Response Body: None

6.1.3.3 Behavior

If metadata exists for the asset identified by the provided identifier (ContentID or APID), the status of
the identified metadata is set to deleted.

Asset metadata may only be deleted by the creator of the digital asset or its proxy.

Metadata SHALL NOT be deleted if a reference to it exists (for example, in a bundle).

Furthermore, metadata SHALL NOT be deleted if the asset is referred to in a Rights Token in a User’s
Rights Locker. In these cases, the metadata MAY be updated, but not deleted.

6.1.4 MetadataBasicList()

6.1.4.1 API Description

This API call returns a list of Basic Assets.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 90

6.1.4.2 API Details

Path:

 [BaseURL]/Asset/Metadata/Basic/List

Method: GET

Authorized role:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:contentprovider[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:dece[:customersupport]
urn:dece:role:lasp:*[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]

Security Token Subject Scope: None

Opt-in Policy Requirements: None

Request Parameters: None

Request Body: None

Response Body: BasicAssetList

6.1.4.3 Behavior

A collection containing references to <BasicAsset> elements in the system is returned. BasicAssets in
deleted status SHALL NOT be returned.

The request SHOULD include the urn:dece:type:viewfilter:lastmodifieddate filter to ensure
that the response is sorted in chronological order with the most recent elements placed at the beginning
of the response. When combined with the OnOrAfter query parameter, the response will only contain
elements newer that the provided date (see 3.15).

6.1.5 MetadataDigitalList()

6.1.5.1 API Description

This API call returns a list of Digital Assets.

6.1.5.2 API Details

Path:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 91

 [BaseURL]/Asset/Metadata/Digital/List

Method: GET

Authorized role:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:contentprovider[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:dece[:customersupport]
urn:dece:role:lasp:*[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]

Security Token Subject Scope: None

Opt-in Policy Requirements: None

Request Parameters: None

Request Body: None

Response Body: DigitalAssetList

6.1.5.3 Behavior

A collection containing references to <DigitalAsset> elements in the system is returned.

The request SHOULD include the urn:dece:type:viewfilter:lastmodifieddate filter to ensure
that the response is sorted in chronological order with the most recent elements placed at the beginning
of the response. When combined with the OnOrAfter query parameter, the response will only contain
elements newer that the provided date (see 3.15).

6.2 ID Mapping Functions

A map is a reference between the logical identifier for a digital asset (called the asset logical identifier,
or ALID), and the physical identifier for a digital asset (called an asset physical identifier, or APID) of a
particular file type (such as high-definition, ISO, 3-D, etc.). A replaced asset is a digital asset that has
been replaced by an equivalent asset. A recalled asset is a digital asset that has been replaced with
another digital asset, in a case where the original asset must nevertheless be maintained for
downloading or streaming because a user has an outstanding to the asset.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 92

6.2.1 MapALIDtoAPIDCreate(),MapALIDtoAPIDUpdate(),
AssetMapALIDtoAPIDGet(), AssetMapAPIDtoALIDGet()

6.2.1.1 API Description

These functions create, update, and return the mapping between logical and physical assets.

6.2.1.2 API Details

Path:

[BaseURL]/Asset/Map/

[BaseURL]/Asset/Map/{Profile}/{ALID}

[BaseURL]/Asset/Map/{Profile}/{APID}

Methods: PUT | POST | GET

Authorized Roles:

For GET operations:

urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:accessportal[:customersupport]
urn:dece:role:lasp[:customersupport]
urn:dece:role:contentprovider[:customersupport]

For POST and PUT operations:

urn:dece:role:contentprovider[:customersupport]

Security Token Subject Scope:

urn:dece:role:account for GET requests from Devices
None for all other roles

Opt-in Policy Requirements: None

Request Parameters:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 93

Profile is a profile from the AssetProfile-type enumeration.
APID is an Asset Physical identifier for a digital asset.
ALID is a logical identifier for a digital asset.

Request Body:

A PUT request message conveys the updated asset resource. A POST request message (to
[baseURL]/Asset/Map) creates a new map, and includes the Asset resource.

Element Attribute Definition Value Card.

LogicalAsset or DigitalAsset Describes the logical or
digital asset, and includes
the windowing details for
the asset

LogicalAsset Mapping from logical to
physical, based on profile

dece:ALIDAsset-type 1..n

LogicalAssetList An enumeration of logical
asset references associated
with an Asset Map
(response only)

dece:LogicalAssetList-
type

0..n

Response Body:

A GET request message returns the Asset resource.

6.2.1.3 Behavior

When a POST operation is used (that is, when a *Create API is invoked), a map is created as long as the
ALID is not already in a map for the given profile. When a PUT is used (that is, an *Update), the
Coordinator looks for a matching ALID. If there is a match, the map is replaced. If no matching map is
found, a map is created. Only the Node who created the asset may update the asset’s metadata.

When a GET is used, the Asset is returned.

To determine a map’s type, that is, whether the map is to or from an ALID, the provided asset identifier
is inspected. An ALID-to-APID map, for example, provides the ALID in the request. Conversely, an APID-
to-ALID map provides the APID in the request.

Because an APID may appear in more than one map, more than one ALID may be returned. Whether an
ALID is mapped to one or more APIDs, the entire map is returned, because the APID or APIDs required to
construct a complete response cannot be known in advance. In most cases, however, a single
APIDGroup (containing active APIDs only) will be returned as the entire map.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 94

Mapping APIDs to ALIDs will map any active APID as follows:

• All APIDGroup elements within the Map element (in the LPMap element) will be returned.

• Any active APID or ReplacedAPID will be returned.

• A RecalledAPID SHALL NOT be returned, unless the map does not contain any valid active
APIDs or ReplacedAPIDs. The feature of returning the RecalledAPID in the case there are no
Active or Replaced APIDs provides additional information (i.e., RecalledAPID/ReasonURL) about
why the User is not getting the expected Container.

When an APID is mapped, the ALID identified in the ALID element in the LPMap element will be
returned.

For requests containing an ALID, if the ALID’s status is anything other than active, an error indicating
that the map was not found will be returned.

6.2.2 LogicalAssetList()

6.2.2.1 API Description

This API call returns a list of Logical Assets.

6.2.2.2 API Details

Path:

 [BaseURL]/Asset/Map/List

Method: GET

Authorized role:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:dece[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp:*[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:contentprovider[:customersupport]

Security Token Subject Scope: None

Opt-in Policy Requirements: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 95

Request Parameters: None

Request Body: None

Response Body: LogicalAssetList

6.2.2.3 Behavior

A collection containing <LogicalAssetReference> elements in the system is returned. Logical Assets in
deleted status SHALL NOT be returned.

The request SHOULD include the urn:dece:type:viewfilter:lastmodifieddate filter to ensure
that the response is sorted in chronological order with the most recent elements placed at the beginning
of the response. When combined with the OnOrAfter query parameter, the response will only contain
elements newer that the provided date (see 3.15).

6.2.3 LogicalAssetDelete()

6.2.3.1 API Description

This API allows the Content Provider and its Customer Support subrole to delete logical asset metadata.

6.2.3.2 API Details

Path:

[BaseURL]/Asset/Map/{Profile}/{ALID}

[BaseURL]/Asset/Map/{ALID}

Method: DELETE

Authorized role: urn:dece:role:contentprovider:[customersupport]

Request Parameters:

ALID is a Logical identifier for a digital asset.
Profile is a profile from the AssetProfile-type enumeration

Request Body: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 96

Response Body: None

6.2.3.3 Behavior

The identified logical asset is set to deleted status. When the API variant that does not take the Profile is
used, all profiles associated with the Logical asset are deleted.

Assets SHALL NOT be deleted if a reference to it exists (for example, in a bundle OR if the asset is referred
to in a Rights Token in a User’s Rights Locker).

6.3 Bundle Functions

A bundle is a collection of metadata that describes an arbitrary collection of assets. It is analogous to a
boxed set sold on store shelves; it may include feature films, audio tracks, electronic books, and other
media (such as theatrical trailers, making-of documentaries, slide shows, etc.).

6.3.1 BundleCreate(), BundleUpdate()

These APIs are used to manage the metadata that defines a bundle of digital assets.

6.3.1.1 API Description

BundleCreate is used to create a bundle. BundleUpdate updates the bundle. The BundleUpdate API may
be used to change the status of a bundle, which may have the one of several values: active, deleted,
pending, or other.

The Coordinator SHALL require that active BasicMetadata resources exist for each
LogicalAssetReference/ContentID instance and active LogicalAsset resources exist for each
LogicalAssetReference/ALID instance.

6.3.1.2 API Details

Path:

[BaseURL]/Asset/Bundle

[BaseURL]/Asset/Bundle/{BundleID}

Methods: POST | PUT

Authorized Roles:

urn:dece:role:retailer[:customersupport]
urn:dece:role:contentprovider[:customersupport]

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 97

Request Body: The request body is the same for both BundleCreate and BundleUpdate.

Element Attribute Definition Value Card.

Bundle Bundle dece:BundleData-type

Response Body: None

6.3.1.3 Behavior

When a POST operation is executed (for BundleCreate), a bundle is created. The BundleID is checked for
uniqueness. The resource without the BundleID is used.

When a PUT operation is executed (for BundleUpdate), the Coordinator looks for a matching BundleID.
If there is a match, the bundle is replaced. The resource which includes the BundleID is used.

Only urn:dece:role:coordinator:customersupport roles and the bundle’s creator MAY update
a Bundle’s status.

6.3.2 BundleGet()

6.3.2.1 API Description

The BundleGet API is used to return bundle data.

6.3.2.2 API Details

Path:

[BaseURL]/Asset/Bundle/{BundleID}

Method: GET

Authorized Roles:

urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:accessportal[:customersupport]
urn:dece:role:lasp[:customersupport]
urn:dece:role:contentprovider[:customersupport]

Request Parameters: BundleID is the unique identifier for a bundle.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 98

Request Body: None

Response Body:

Element Attribute Definition Value Card.

Bundle Bundle dece:BundleData-type

6.3.2.3 Behavior

A bundle (matching the BundleID) is returned.

6.3.3 BundleDelete()

6.3.3.1 API Description

The BundleDelete API is used to set the bundle’s status to deleted.

6.3.3.2 API Details

Path:

[BaseURL]/Asset/Bundle/{BundleID}

Method: DELETE

Authorized Roles:

urn:dece:role:contentprovider[:customersupport]
urn:dece:role:retailer[:customersupport]

Request Parameters: BundleID is the unique identifier for a bundle.

Request Body: None

Response Body: None

6.3.3.3 Behavior

The identified bundle’s status is set to deleted. BundleDelete is discouraged, since bundles can only be
deleted if they have never been referred to in a purchased or rented Rights Token.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 99

Note: This API may be deprecated in future releases of this specification.

6.4 Metadata

Definitions of metadata are part of the md namespace, as defined the DECE Metadata Specification
[DMeta].

6.4.1 DigitalAsset Definition

Common metadata does not use the APID identifier, so dece:DigitalAssetMetadata-type extends
md:DigitalAssetMetadata-type with the following elements to support the APIs.

Element Attribute Definition Value Card.

DigitalAsset Physical metadata for an asset dece:DigitalAssetMetadata-type

Table 15: DigitalAsset Definition

Not shown in table below, is that there is an xs:choice between {Audio, Video, Subtitle, Image and
Interactive} and {ODMP}.

Element Attribute Definition Value Card.
dece:Digita
lAssetMetad
ata-type

 Physical metadata for an asset

 APID Asset Physical identifier md:AssetPhysicalID-type
 ContentID Content identifier md:contentID-type
 UpdateNu

m
An increasing integer indicating
the version of the resource. If
absent, value is assumed to be
1 (one). The first update SHALL
be indicated by 2 (two).

xs:positiveInteger 0..1

Audio Metadata for an Audio Asset md:DigitalAssetAudioData-type 0..n

Video Metadata for a Video Asset md:DigitalAssetVideoData-type 0..n

Subtitle Metadata for Subtitles md:DigitalAssetSubtitleData-type 0..n

Image Metadata for Images md:DigitalAssetImageData-type 0..n

interactive Metadata for Interactive Assets md:DigitalAssetInteractiveData-
type

0..n

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 100

Element Attribute Definition Value Card.

ODMP Description of an ODMP, as per
[DDMP]

dece:DigitalAssetODMP-type

ResourceStatus Status of the resource. See
section 17.2.

dece:ElementStatus-type 0..1

Table 16: DigitalAssetMetadata-type Definition

Element Attribute Definition Value Card.

DigitalAssetODMP-
type

 Physical metadata for an asset

 DMPID DMP Identifier associated with the
described DMP. This identifier SHALL
match the APID attribute of the
encapsulating DigitalAsset element.

md:AssetPhysicalID

 Version ODMP Version as per [SMPTE2053] xs:nonNegativeInteger

Presentation A description of a Presentation within
DMP. An instance SHALL exist for each
Presentation within the DMP.

dece:DigitalAssetPresenta
tion-type

1..n

Application A description of a Media Application
within DMP. An instance SHALL exist
for each Application within the DMP.

dece:DigitalAssetApplicat
ion-type

0..n

OtherContainer Any other Containers within the DMP. md:ContainerMetadata-type 0..n

Table 17: DigitalAssetODMP Definition

Element Attribute Definition Value Card.

DigitalAssetPre
sentation-type

 Physical metadata for an asset

 PresentationID Presentation ID associated with this
Presentation

md:AssetLogicalID-
type

 Version Presentation Version as per [SMPTE2053] xs:nonNegativeInteger

MediaProfile The DECE Media Profile associated with
this Presentation

dece:AssetProfile-
type

APID APID for each DCC associated with DMP,
whether or not that DCC is in the ODMP.

md:AssetPhysicalID-
type

1..n

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 101

Element Attribute Definition Value Card.

 isPresent Indicates whether the DCC associated
with this APID is present in the ODMP.

xs:boolean

 forceDownload Indicates whether the download manager
SHALL download the DCC associated with
this APID immediately following ODMP
download.

xs:boolean 0..1

Table 18: DigitalAssetPresentation Definition

Element Attribute Definition Value Card.

DigitalAssetApplica
tion-type

 Physical metadata for an asset

 Version Media Application Version as per
[SMPTE2053]

xs:nonNegativeInteger

APID APID for each Media Application
element associated with DMP,
whether or not that Media
Application element is in the ODMP.

md:AssetPhysicalID-type 1..n

 isPresent Indicates whether the Media
Application element associated with
this APID is present in the ODMP.

xs:boolean

 forceDownload Indicates whether the download
manager SHALL download the DCC
associated with this APID
immediately following ODMP
download.

xs:boolean 0..1

PresentationID Each Presentation associated with
this Media Application. If absent,
Media Application is associated with
all Presentations in the DMP. If
present, the Coordinator SHALL
verify that this identifier matches a
presentation described in the same
ODMP element.

md:AssetLogicalID-type 0..n

Table 19: DigitalAssetApplication Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 102

6.4.1.1 Digital Asset Status Transitions

The possible Status values are: active, pending and deleted.

6.4.2 BasicAsset Definition

The BasicAsset element extends the md:BasicMetadata-type.

Element Attribute Definition Value Card.

BasicAsset dece:AssetMDBasic-type
BasicData Basic Metadata md:MDBasicDataType
ResourceStatus Status of the resource. See

section 17.2.

dece:ElementStatus-type 0..1

Table 20: BasicAsset Definition

6.4.2.1 Basic Asset Status Transitions

The possible Status values are: active, pending, deleted, and other.

6.4.3 DigitalAssetList Definition

The DigitalAssetList element is a list of DigitalAsset element references.

Element Attribute Definition Value Card.

DigitalAssetList dece: DigitalAssetList-type

 ViewFilterAttr Response filtering information,

see section 17.5

dece:ViewFilterAttr-type

DigitalAssetReference dece:

DigitalAssetReference-type

0..n

Table 21: DigitalAssetList Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 103

Element Attribute Definition Value Card.

DigitalAssetReference dece:DigitalAssetR

eference-type

 APID Identifier of a DigitalAsset element. The

value of this identifier is the APID attribute

of the DigitalAsset.

6.4.3.1 md:AssetPh

ysicalID-

type

 CurrentStatus The same value as the of the resource’s

//ResourceStatus/Current/Value

element (typically active, pending or

deleted).

dece:StatusValue-

type

 DatedElement

AttrGroup

 dece:DatedElementA

ttrGroup-type

Table 22: DigitialAssetReference Definition

6.4.4 BasicAssetList Definition

The BasicAssetList element is a list of BasicAsset element references.

Element Attribute Definition Value Card.

BasicAssetList dece:BasicAssetList-type

 ViewFilterAttr Response filtering

information, see section 17.5

dece:ViewFilterAttr-type

BasicAssetReference dece:

BasicAssetReference-type

0..n

Table 23: BasicAssetList Definition

Element Attribute Definition Value Card.

BasicAssetReference dece:BasicAssetRe

ference-type

 ContentID Identifier of a BasicAsset element. The

value of this identifier is the ContentID

attribute of the BasicAsset.

md:ContentID-type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 104

Element Attribute Definition Value Card.

 CurrentStatus The same value as the of the resource’s

//ResourceStatus/Current/Value

element (typically active, pending or

deleted).

dece:StatusValue-

type

 DatedElement

AttrGroup

 dece:DatedElement

AttrGroup-type

Table 24: BasicAssetReference Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 105

6.5 Mapping Data

6.5.1 Mapping Logical Assets to Content IDs

Every Logical Asset SHALL map to a single ContentID. Every ContentID MAY map to more than one
Logical Asset.

6.5.1.1 LogicalAssetReference Definition

Element Attribute Definition Value Card.

LogicalAsset Reference Logical Asset to Content
identifier map

dece:LogicalAssetRefere
nce-type

ALID Asset Logical identifier md:AssetLogicalID-type
ContentID Content identifier

associated with the Logical
Asset

dece:ContentID-type

Table 25: LogicalAssetReference Definition

6.5.2 Mapping Logical to Digital Assets

A Logical Identifier maps to one or more Digital Assets for each available Profile.

6.5.2.1 LogicalAsset Definition

Mappings may be from an ALID to one or more APIDs. Maps are defined within one or more
AssetFulfillmentGroups, identified by a FulfillmentGroupID and carry a serialized version identifier.

Distinct AssetFulfillmentGroup instances SHALL exist for DCCs of different versions as indicated by
LatestContainerVersion. An AssetFulfillmentGroup MAY contain DCCs with different versions.
LatestContainerVersion SHALL reflect the most current DCC version.

Distinct AssetFulfillmentGroup instances SHALL exist for DMPs as indicated by LatestContainerVersion.

An AssetFulfillmentGroup SHALL NOT contain a DigitalAssetGroups that references a DCC and a
DigitalAssetGropus than references a DMP.

APIDs are grouped in DigitalAssetGroup elements. If no APIDs have been replaced or recalled (as
described in DigitalAssetGroup-type Definition, below), then there should be only one group. If APIDs
have been replaced or recalled, the digital asset grouping indicates which specific APIDs replace which
specific APIDs. The grouping (as opposed to an ungrouped list) provides information that allows Nodes
to know which specific replacements need to be provided.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 106

Logical Assets can include a description of one or more restrictions on the Physical Assets, which inform
DSPs and LASPs when and where they cannot Download, Stream, License or Fulfill Discrete Media. The
Coordinator SHALL NOT enforce these restrictions. See [DSystem] 7.4.5.

APIDs can map to more than one ALID, but this mapping is not supported directly; it is handled by
creating several APID-to-ALID maps.

Element Attribute Definition Value Card.

LogicalAsset Asset mapping from logical to
physical

dece:ALIDAsset-type

 Version version number, increasing
monotonically with each
update

xs:int 0..1

 ALID Asset Logical identifier for Asset md:AssetLogicalID-type
 MediaProfile Media Profile for Asset dece:AssetProfile-type
 ContentID md:ContentID-type
 Assent

StreamAllowe
d

Indicates whether Streaming is
enabled for LASPs without need
of licensing from the Content
Provider

xs:boolean

 AssentStream
Loc

The location of the
AssentStream content. This
value SHALL NOT be set unless
AssentStreamAllowed is set to
TRUE.

xs:anyURI 0..1

AssetFulfillmentGroup A collection of
DigitalAssetGroups

dece:AssetFulfillment
Group-type

1..n

AssetRestriction Regional and temporal
Information about restrictions
on Download, Licensing,
Streaming and Discrete Media
Fulfillment.

dece:AssetRestriction-
type

0..n

Table 26: LogicalAsset

6.5.2.2 LogicalAssetList Definition

The LogicalAssetList element is a list of LogicalAssetReference elements.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 107

Element Attribute Definition Value Card.

LogicalAssetList dece:LogicalAssetList-

type

 ViewFilterAttr Response filtering

information, see section 17.5

dece:ViewFilterAttr-type

LogicalAssetReference LogicalAssetReference

element, see section 6.5.1

dece:LogicalAssetReferen

ce-type

0..n

Table 27: LogicalAssetList Definition

Element Attribute Definition Value Card.

LogicalAssetReference dece:LogicalAssetRe

ference-type

 ALID Identifier of a LogicalAsset element. The

value of this identifier is the ALID

attribute of the logical asset.

md:AssetLogicalID-

type

 ContentID Identifier of a BasicAsset element. The

value of this identifier is the ContentID

attribute of the BasicAsset.

md:ContentID-type

 CurrentStatus The same value as the of the resource’s

//ResourceStatus/Current/Valu

e element (typically active, pending

or deleted).

dece:StatusValue-

type

 DatedElement

AttrGroup

 dece:DatedElementAt

trGroup-type

Table 28: LogicalAssetReference Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 108

6.5.2.3 APID Grouping Scenarios

 This section intentionally left blank.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 109

6.5.2.4 AssetFulfillmentGroup Definition

Element Attribute Definition Value Card.

AssetFulfillmentGroup dece:Asset
FulfillmentGroup-type

 FulfillmentGr
oupID

The unique identifier for a
fulfillment group

xs:string 0..1

 LatestContai
nerVersion

The highest version of all
Container versions (no
validation is required)

xs:string 0..1

 LatestSpecVe
rsion

The version of the spec
describing elements
herein.

xs:string 0..1

DigitalAssetGroup Map details dece:DigitalAsset
Group-type

1…n

Table 29: AssetFulfillmentGroup

LatestContainerVersion SHALL be included and contains the highest version of each DCC referenced
within the group. The version of the DCC is the major_brand in a Container’s ‘ftyp’ Box as defined in
[DMedia], Section 2.3.1.

LatestSpecVersion SHALL be encoded as following

• ‘DMedia-v1.0.7’ or absent when no DigitalAssetGroup instances contain DCCs only compliant
with [DMedia] versions later than 1.0.7

• ‘DMedia-v1.1’ When DigitalAssetGroup instances contain DCCs only compliant with [DMedia]
versions later than 1.0.6. It is anticipated that in the future, newer DCCs might be assigned a
later version.

• ‘DDMP-v1.0’ When DigitalAssetGroups contain DMPs. At some point, newer DMPs might be
assigned a later version.

6.5.2.5 DigitalAssetGroup Definition

A DigitalAssetGroup is a list of APIDs with identification of their state (active, replaced, or recalled).

The meaning of APID state identification is as follows:

• APIDs in an ActiveAPID element are active and current. DCCs associated with APIDs in a
DigitalAssetGroup with CanDownload=’true’ SHALL be downloaded and licensed in accordance

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 110

with applicable policies. Content associated with other APIDs SHOULD be streamed or otherwise
fulfilled in accordance with DigitalAssetGroup attributes and applicable policies.

• APIDs in the ReplacedAPID element have been replaced by the APIDs in the ActiveAPID element.
That is, ReplacedAPID elements refer to Containers that are obsolete but still may be
downloaded, licensed, streamed or otherwise fulfilled in accordance with DigitalAssetGroup
attributes and applicable policies. APIDs in the ActiveAPID element are preferable.
ReplacedAPIDs SHOULD NOT be downloaded, licensed, streamed or otherwise fulfilled. An APID
SHALL NOT be placed in ReplacedAPID unless the corresponding APID has been placed in
ActiveAPID.

• APIDs in RecalledAPIDs SHALL NOT be downloaded, licensed, streamed or otherwise fulfilled,
with the exception that the RecalledAPID MAY be licensed if the LicensingAllowed attribute is
set to ‘true’. Normally, there will always be at least one ActiveAPID. However, for the
contingency that an APID is recalled and there is no replacement, there may be one or more
RecalledAPID elements. When the APID is a single audio track, LicensingAllowed attribute MAY
be ignored. Note that this constraint is included because audio tracks are currently licensed
along with video tracks, and in a DMP it is impractical to determine whether the recalled audio
track is present. Expected behavior on recalled audio tracks is generally consistent with
LicensingAllowed=’true’. It is recommended that LicensingAllowed be set to ‘true’ to ensure
consistency.

Exactly one of DiscreteMediaFulfillmentMethods, CanDownload and CanStream SHALL be included. The
intended use of Assets in the AssetGroup is designated by the DiscreteMediaFulfllmentMethods,
CanDownload and CanStream attributes. A downloadable DCC is indicated by CanDownload. If an Asset
is suitable for streaming (e.g., a CFF Container with streamable media), CanStream is set to ‘true’.
DiscreteMediaFulfillmentMethods signals Assets suitable for Discrete Media Fulfillment; for example,
urn:dece:type:discretemediaformat:dvd:cssrecordable for a burnable DVD.

APIDs in a DigitalAssetGroup SHALL correspond with acceptable uses indicated by the CanDownload,
CanStream and DiscreteMediaFulfillmentMethods attributes. In particular, only DCCs can be included
when CanDownload is set to ‘true’.

No more than one instance of a DigitalAssetGroup within an AssetFulfillmentGroup SHALL have the
same attribute value. For example, there cannot be more than one DigitalAssetGroup with
CanDownload=’true’.

Note that an APID may exist in more than one DigitalAssetGroup, and these APIDs might be classified
differently. For example, an APID whose DCC is found to be noncompliant might be in a RecalledAPID
element in a DigitalAssetGroup with the attribute CanDownload=’true’; while that same APID was in a
DigitalAssetGroup of with attribute CanStream=’true’ in the ActiveAPID element.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 111

APIDs usage within an AssetFulfillmentGroup SHALL NOT conflict. For example, an APID cannot be in
more than one of ActiveAPID, ReplacedAPID and RecalledAPID elements.

A DigitalAssetGroup SHALL have exactly one of DiscreteMediaFulfillmentMethods, CanDownload,
CanStream and IsDMP.

Element Attribute Definition Value Card.

DigitalAssetGroup Assets defined as a part of the Logical
Asset, expressed as a map

dece:DigitalAssetGroup
-type

 DiscreteMedia
FulfillmentMe
thods

One Discrete Media Fulfillment usage
for APIDs in this map. It identifies which
methods the APID can fulfill.

xs:NMTOKENS 0..1

 CanDownload It is acceptable to download a
Container associated with the APID if
the ActiveAPID is not yet available. If
FALSE or absent, the Container SHALL
NOT be downloaded.
The purpose of this attribute is to
describe possible usage of the
container (format). It does not express
any window-related authorization.

xs:boolean 0..1

 CanStream It is acceptable to stream a Container
associated with the APID if the
ActiveAPID is not yet available. If FALSE
or absent, the Container SHOULD NOT
be streamed.
The purpose of this attribute is to
describe possible usage of the
container (format). It does not express
any window-related authorization.

xs:boolean 0..1

 IsDMP Indicates that this DigitalAssetGroup
contains APIDs referring to DMPs.

xs:boolean

ActiveAPID Active Asset Physical identifier for
Physical Assets associated with ALID

md:AssetPhysicalID-
type

0..n

ReplacedAPID Replaced Asset Physical identifier for
Physical Assets associated with ALID

md:AssetPhysicalID -
type

0..n

RecalledAPID Recalled Asset Physical identifier for
Physical Assets associated with ALID

dece:RecalledAPID-type 0..n

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 112

Table 30: DigitalAssetGroup Definition

6.5.2.6 RecalledAPID Definition

Element Attribute Definition Value Card.

RecalledAPID dece:RecalledAPID-type
 ReasonURL An attribute of RecalledAPID, which

contains a Content Provider-supplied
URL to a page explaining why the request
for this asset cannot be fulfilled.

xs:anyURI 0..1

 LicensingAllowed Indicates that an already downloaded
Container can be licensed. If ‘true’,
licensing is allowed for the associated
APID. If ‘false’ or absent licensing is not
allowed. This only applies to
DigitalAssetGroups with CanDownload
set to ‘true’.

Behavior associated with this attribute is
undefined if the APID refers to a DCC
containing a single audio track.

xs:boolean
default ‘false’

0..1

Table 31: RecalledAPID Definition

6.5.2.7 AssetRestriction Definition

An Asset Restriction is a period of time in a particular region during which policies are applied with respect
to downloading, streaming or Discrete Media Fulfillment. This is the mechanism for implementing
blackout windows. Region, Start and End describe the location and timeframe of the restriction. Asset
release is controlled by the restriction.

Restrictions are one of the following:

Restriction Definition

urn:dece:contentrestriction:nodownload Download not allowed (all forms)
urn:dece:contentrestriction:nodownload:legacy Download not allowed for legacy devices
urn:dece:contentrestriction:nodownload:dcc Download not allowed for DCCs
urn:dece:contentrestriction:nolicensing Licensing not allowed
urn:dece:contentrestriction:nostream Streaming not allowed
urn:dece:contentrestriction:nodiscretemedia Discrete Media Fulfillment not allowed (all types)

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 113

Restriction Definition
urn:dece:contentrestriction:nodiscretemedia:packaged Discrete Media Fulfillment not allowed for packaged media
urn:dece:contentrestriction:nodiscretemedia:packaged:hd Discrete Media Fulfillment not allowed for packaged HD
urn:dece:contentrestriction:nodiscretemedia:css Discrete Media Fulfillment not allowed for CSS burnable
urn:dece:contentrestriction:nodiscretemedia:cprmsd Discrete Media Fulfillment not allowed for CPRM SD

Following is the element definition.

Element Attribute Definition Value Card.

AssetRestriction dece:AssetRestriction-
type

Region Region to which the window applies. If
absent, then restrictions are world-wide.

md:Region-type 0..n

Start Date and time at which restriction starts. If
absent, the start period is immediate.
Time in UTC.

xs:dateTime 0..1

End Date and time at which restriction ends. If
absent, there is not end period; that is, all
time following Start. Time in UTC.

xs:dateTime 0..1

Restriction Policies define what is not allowed. xs:anyURI 1..n

Table 32: AssetRestriction Definition

6.5.3 MediaProfile Values

The simple type AssetProfile-type defines the set of MediaProfile values used within DECE. The
base type is xs:anyURI, and the values are described in the following table.

MediaProfile Value Description
urn:dece:type:mediaprofile:pd Portable Definition
urn:dece:type:mediaprofile:sd Standard Definition
urn:dece:type:mediaprofile:hd High Definition
urn:dece:type:mediaprofile:uhd Ultra High Definition

Table 33: MediaProfile Values

6.6 Bundle Data

A bundle consist of a list of ContentID-to-ALID maps (dece:BundleData-type) and optional
information to provide logical grouping to the Bundle in the form of composite resources
(md:CompObj-type). In its simplest form, the Bundle is one or more ContentID-to-ALID maps along
with a BundleID and a text description. The semantics of the bundle consists of the rights associated
with the ALID and described by metadata. The Bundle refers to Rights Tokens, so there is no need to

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 114

include Profile information in the Bundle: that information exists in a Rights Token. A Bundle uses the
Composite Resource mechanism (md:CompObj-type, as defined in [DCMeta]) to create a tree-
structured collection of content identifiers, with optional descriptions and metadata.

6.6.1 Bundle Definition

The Bundle structure is described in the following table.

Note: This specification introduces a new element to the bundle structure (ContentID), that allows
Content Publishers and Retailers to describe basic metadata for the Bundle. The version attribute of the
schema has been incremented, however the namespace of the schema has not changed. Coordinator
clients should ensure that they have updated their schema accordingly, and gracefully handle the
presence of this element.

Element Attribute Definition Value Card.
Bundle dece:BundleData-type
 BundleID Unique identifier for the

Bundle

dece:EntityID-type

ContentID Identifier of a BasicAsset
element. Allows Content
Publishers and Retailers to
reference Basic metadata
for the Bundle..

dece:EntityID-type 0..1

DisplayName A localizable string used for
display purposes

dece:LocalizedStringA
bstract-type

1…n

LogicalAsset
Reference

 A set of Logical Asset
references

dece:LogicalAsset
Reference-type

1…n

CompObj Information about each
asset component

md:CompObj-type 0..1

Resource Status Status of element dece:ElementStatus-
type

0..1

Table 34: Bundle Definition

6.6.2 LogicalAssetReference Definition

The LogicalAssetReference is used to map ALID to ContentID

Element Attribute Definition Value Card.

LogicalAssetReference dece:LogicalAsset
Reference-type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 115

Element Attribute Definition Value Card.
ContentID The unique

identifier for a
basic asset in the
Bundle

md:ContentID-type

ALID Asset logical
identifier

md:AssetLogicalID-type

Table 35: LogicalAssetReference Definition

6.6.3 Bundle Status Transitions

The possible Status values are: active, pending, deleted, and other.

Coordinator API Specification Version 2.2

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 116

7 Rights

The Coordinator is an entitlement registry service. Its primary resources are entitlements expressed as
Rights, which are an indication to API Clients that Users have acquired the rights to the digital assets
identified in a Rights Token.

7.1 Rights Functions

Rights Lockers and Rights Tokens are active only if their status (ResourceStatus/Current) is set to
urn:dece:type:status:active. Rights Lockers and Rights Tokens are accessible to API Clients
according to the “API Invocation by Role” table in Appendix A which also specifies which representation
of the resource is provided in a response.

The Coordinator SHALL NOT allow the number of DiscreteMediaRights within a given Rights Token to
exceed the number determined by the Ecosystem parameter DISCRETE_MEDIA_LIMIT.

7.1.1 Rights Token Visibility

In general, the retailer that created a Rights Token (called the issuer) can access a Rights Token that it
issued, regardless of the status of the Rights Token. For Rights Tokens issued by other retailers,
however, a retailer can view only the Rights Tokens whose status is set to active.

The following table lists the Roles, the status of the Rights Tokens that are visible to the Role, and
whether the Role may read (R), write (W), or read and write (RW) the values of Rights Token properties.
It also describes the visibility of the Rights Tokens for the listed roles.

Role Rights Token
Status

R/W Visibility

retailer:issuer All RW All Rights Tokens created by the issuer are visible
retailer:issuer:customersupport All RW All Rights Tokens created by the issuer are visible
coordinator:customersupport All R All Rights Tokens in the Rights Locker are visible, regardless

of status or issuer
Web Portal Active,

Pending
R Rights Tokens with the specified statuses are visible

All other roles Active,
Pending

R Only active and pending Rights Tokens are visible

Table 36: Rights Token Visibility by Role

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 117

7.1.2 RightsTokenCreate()

7.1.2.1 API Description

The RightsTokenCreate API is used to add a Rights Token to a Rights Locker.

7.1.2.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken

Method: POST

Authorized Roles:

urn:dece:role:retailer[:customersupport]

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: None

Request Body:

Element Attribute Definition Value Card.

RightsTokenData A fully populated Rights
Token. All required
information SHALL be
included in the request.

dece:RightsTokenData-
type

1

Response Body: None

7.1.2.3 Behavior

This creates a Right for a given Logical Asset Media Profile(s) for a given Account. The Rights token is
associated with the Account, the User, and the Retailer.

The Node SHALL NOT set the value of the RightsTokenID element, which is established by the
Coordinator.

RightsTokenCreate() MAY be invoked for an Account with pending status.

If no error conditions occur, the Coordinator SHALL respond with an HTTP 201 status code (Created) and
a Location header containing the URL of the created resource.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 118

Once created, the Rights token SHALL NOT be physically deleted, only flagged in the ResourceStatus
element with a <Current> Status value of ‘deleted’. Modifications to the Rights token SHALL be noted
in the History element of the ResourceStatus Element.

Nodes implementing this API interface SHOULD NOT conclude any commerce transactions (if any), until
a successful Coordinator response is obtained, as a token creation may fail due to Parental Controls or
other factors.

Rights are associated with content by their identifiers ContentID and ALID. These identifiers SHALL be
verified by the Coordinator when the RightsToken is created. The corresponding LogicalAsset and
BasicAsset properties SHALL also be validated by the Coordinator when the RightsToken is created.

Nodes SHALL create all RightsToken media profiles which apply. For example, a RightsToken providing
the HD media profile must also include the media profile for SD. [DSystem] defines which media profiles
are required for a given purchased media profile.

Nodes SHALL create all necessary RightsTokens when creating Bundles or other composite content.

The DiscreteMediaRightsRemaining SHALL NOT be included with the creation of a Rights Token. This
field is used by the Coordinator for response values only, and is calculated based on the available
DiscreteMediaRightsTokens as defined in section 16.

The Coordinator SHALL require that:

• The ALID attribute value is a valid identifier, with a corresponding LogicalAsset resource in
active status,

• The ContentID attribute value is a valid identifier with a corresponding BasicMetadata resource
in active status,

• When SoldAs is present

o All ContentID elements in the Rights Token’s SoldAs element contain a valid identifier
with a corresponding BasicAsset resource in active status,

o The identifier in the RightsTokenData/@ContentID attribute exists in one instance of
SoldAs/ContentID list, or within the Bundle referenced by SoldAs/BundleID

o If SoldAs contains a BundleID:

 The BundleID is a valid identifier and corresponds to a Bundle resource in
active status (the ‘referenced Bundle’),

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 119

 RightsTokenData/@ALID and RightsTokenData/@ContentID attributes
correspond with ALID and ContentID in one instance of a LogicalAssetReference
element in the referenced Bundle.

Upon successful creation, the Coordinator SHALL set the RightToken status to active.

7.1.3 RightsTokenDelete()

7.1.3.1 API Description

This API changes a rights token to an inactive state. It does not actually remove the rights token, but sets
the status element to ‘deleted’.

7.1.3.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}

[BaseURL]/RightsToken/{RightsTokenID}

Method: DELETE

Authorized Roles:

urn:dece:role:retailer[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:dece:customersupport
urn:dece:role:coordinator:customersupport

Security Token Subject Scope: urn:dece:role:user except for the
urn:dece:role:retailer[:customersupport]role, where use of a Delegation Security Token is
optional.

Opt-in Policy Requirements: None

Request Parameters:

RightsTokenID is the unique identifier for a rights token
AccountID is the unique identifier for an Account

Request Body: None

Response Body: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 120

7.1.3.3 Behavior

ResourceStatus is updated to reflect the deletion of the right. Specifically, the status value of the
<Current> element within the ResourceStatus element is set to deleted. The prior <Current> Status
gets moved to the ResourceStatus/History.

When the deletion is the result of a user request, the Node SHALL include a valid Delegation Security
Token. Whenever a Delegation Security Token is included in the request, the Coordinator SHALL send an
email notification to all the Users in the Account.

The URI path that excludes the {AccountID} parameter is exclusively for the use of Retailer (Issuer only)
and its Customer Support subrole. Attempts to delete Rights Tokens created by other retailers shall
result in a 403 Forbidden HTTP Status response.

Nodes SHALL NOT include a Delegation Security Token when using the URI path that excludes the
{AccountID} parameter. If a Delegation Security Token is included in this case, it will be ignored by the
Coordinator. If a Node has a valid, active Delegation Security Token, it SHOULD use the API form that
includes the {AccountID} parameter, unless the Node’s intent is to correct a Right.

RightsToken deletion without AccountID and Delegation Security Token is reserved for cases when a
Retailer needs to correct or update an existing Right. For example, removing an incorrectly created
Right, updating Media Profile or StreamWebLoc values, removing an accidentally duplicated Right or a
Right with a reversed transaction (refund, credit card decline etc.). No email notification is sent when
Rights are deleted using the URI path that excludes the {AccountID} parameter.

7.1.4 RightsTokenGet()

This function is used for the retrieval of a Rights token given its identifier. The following rules are
enforced:

Role4 Issuer Security
Context

Applicable Policies LockerView
AllConsent

RightsToken Notes

DECE N/A Account N/A Always TRUE RightsTokenFull
DECE: CS N/A Account N/A Always TRUE RightsTokenFull 3, 7
Coordinator: CS N/A Account N/A Always TRUE RightsTokenFull 3, 7
Web Portal

N/A
User ParentalControl

(BlockUnratedContent,
RatingPolicy), AllowAdult

Always TRUE RightsTokenFull 1

Web Portal CS N/A Account N/A Always TRUE RightsTokenFull 1

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 121

Role4 Issuer Security
Context

Applicable Policies LockerView
AllConsent

RightsToken Notes

Retailer

Y

User or
None6

ParentalControl
(BlockUnratedContent,
RatingPolicy), AllowAdult

N/A RightsTokenInfo
or
RightsTokenFull
(when a Security
Token is not
included)

1, 2, 7

Retailer

N

User LockerViewAllConsent,
ParentalControl
(BlockUnratedContent,
RatingPolicy), AllowAdult

FALSE RightsToken not
available

1

TRUE RightsTokenInfo

Retailer: CS

Y

Account
or None6

N/A N/A RightsTokenInfo
or
RightsTokenFull
(when a Security
Token is not
included)

2, 3, 7

Retailer: CS
N

Account LockerViewAllConsent FALSE RightsToken not
available

3

TRUE RightsTokenInfo
Access Portal

N/A

User LockerViewAllConsent,
ParentalControl
(BlockUnratedContent,
RatingPolicy), AllowAdult

FALSE RightsToken not
available

1

TRUE RightsTokenInfo

Access Portal: CS
N/A

Account LockerViewAllConsent FALSE RightsToken not
available

3

TRUE RightsTokenInfo
Linked LASP N/A Account N/A Always TRUE RightsTokenBasic 1
Linked LASP CS N/A Account N/A Always TRUE RightsTokenBasic 3
Dynamic LASP

N/A
User ParentalControl

(BlockUnratedContent,
RatingPolicy), AllowAdult

Always TRUE RightsTokenBasic 1

Dynamic LASP
CS N/A

Account N/A FALSE RightsTokenBasic 3
TRUE RightsTokenInfo
TRUE RightsTokenInfo

1 Requires a valid Security Token issued to entity

2 Rights Tokens are returned regardless of Rights Token Status

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 122

3 Customer Support security context will only be at the Account level
(using one of the Security Tokens issued to the corresponding entity)

4 Relative URN based in urn:dece:role:*

5 The following elements in PurchaseInfo SHALL NOT be included in the response: NodeID,
RetailerTransaction, and TransactionType

6 Issuing Retailers MAY omit the Security Token for RightsTokenGET, RightsTokenUpdate and
RightsLockerDataGet APIs.

7 Allowed to invoke the URI endpoint that excludes the {AccountID} parameter.

Table 37: Rights Token Access by Role

7.1.4.1 API Description

The retrieval of the Rights token is constrained by the rights allowed to the retailer and the user who is
making the request.

7.1.4.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}

[BaseURL]/RightsToken/{RightsTokenID}

Method: GET

Authorized Roles:

urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:accessportal[:customersupport]
urn:dece:role:lasp[:customersupport]

Security Token Subject Scope:

urn:dece:role:user, or None (see below)

Ignored, if submitted for the endpoint form without AccountID

Opt-in Policy Requirements:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 123

urn:dece:type:policy:LockerViewAllConsent
urn:dece:type:policy:ParentalControl:*

Request Parameters: RightsTokenID is the unique identifier for a Rights Token

Request Body: None

Response Body: RightsToken

RightsToken SHALL contain one of the following: RightsTokenBasic, RightsTokenInfo,
RightsTokenData or RightsTokenFull. For more information about these objects, see section 7.2.

7.1.4.3 Behavior

The request for a Rights Token is made on behalf of a User. The Rights Token data is returned in
accordance with Table 37: Rights Token Access by Role.

Nodes SHALL NOT include a Delegation Security Token when using the URI path that excludes the
{AccountID} parameter. If invoked by a Retailer or its Customer Support subrole, only Rights Tokens
created by the invoking Retailer Node or its Customer Support specialization are accessible. Attempts to
access Rights Tokens created by other retailers shall result in a 403 Forbidden HTTP Status response.

If a Node has a valid, active Delegation Security Token, it SHOULD use the API form that includes the
{AccountID} parameter.

It is strongly recommended that Nodes use the ETag in subsequent conditional requests (using If-Match
or If-None-Match) as specified in section 3.5.

7.1.5 RightsTokenDataGet()

7.1.5.1 API Description

This method allows for the retrieval of a list of Right tokens selected by ALID. The list may contain a
single element.

7.1.5.2 API Details

Path:

For the list of Rights tokens based on an ALID:

[BaseURL]/Account/{AccountID}/RightsToken/ByMedia/{ALID}

Method: GET

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 124

Authorized Roles:

urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:accessportal[:customersupport]
urn:dece:role:lasp[:customersupport]

Security Token Subject Scope:
urn:dece:role:user.

Opt-in Policy Requirements:
In accordance with Table 37: Rights Token Access by Role.

Request Parameters:

ALID is the logical identifier for a digital asset.

Response Body:

A list of one or more Rights Tokens.

7.1.5.3 Behavior

A request is made for a list of Rights Tokens. This request is made on behalf of a User.

The Rights Token data is returned in accordance with Table 37: Rights Token Access by Role

When requesting by ALID, Rights tokens that contain the ALID for that Account are returned. There may
be zero or more.

Limited data is returned on Rights tokens that were created by Retailers other than the requestor.

7.1.6 RightsLockerDataGet()

RightsLockerDataGet() returns the list of all the Rights tokens. This operation can be tuned via a request
parameter to return actual Rights tokens with or without metadata or references to those tokens.

7.1.6.1 API Description

The Rights Locker data structure, namely RightsLockerData-type information is returned.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 125

7.1.6.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/List[?response={responseType}]

Method: GET

Authorized Roles:

urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:accessportal[:customersupport]
urn:dece:role:lasp[:customersupport]

Security Token Subject Scope:

urn:dece:role:user or None

Opt-in Policy Requirements:

urn:dece:type:policy:LockerViewAllConsent

Request Parameters: response (optional)

By default, that is if no request parameter is provided, the operation returns a list of Rights Token
references. When present, the response parameter can be set to one of the following values:

token – return the actual Rights tokens
reference – return references to the Rights tokens (RightsTokenReference-type) - (default
setting)
metadata – return the Rights tokens metadata (RightsTokenDetails-type)
download – return only the RightsTokenLocation portion of the Rights Token (<xs:element
name="RightsTokenLocation" type="dece:RightsTokenLocation-type"/>)

For example:

[BaseURL]/Account/{AccountID}/RightsToken/List?response=reference

will instruct the Coordinator to only return a list of references to the Rights Tokens.

In addition, appropriate filter parameters defined in section 3.15 may be included.

Request Body: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 126

Response Body:

Element Attribute Definition Value Card.

RightsTokenList dece:RightsLockerData-type

7.1.6.3 Behavior

The request for Rights Locker data is made on behalf of a User.

In order to prevent operational issues such as timeouts, the Coordinator returns a maximum of
DCOORD_PAGINATION_THRESHOLD Rights Tokens (or references) in a single response. Requests by
users with lockers that have more than DCOORD_PAGINATION_THRESHOLD Rights Tokens will return
the first DCOORD_PAGINATION_THRESHOLD tokens and include the ViewFilterAttr group attributes (see
section 17.5) indicating that additional Rights Tokens are available. See Section 3.16 for information on
retrieving resources in groups.

RightsDataLockerGet responses may include a true value in the FilterMoreAvailable attribute
indicating a partial Rights Locker response.

The aforementioned request pagination controls apply whether or not a Delegation Security Token was
included in the request.

Similarly, the response parameters defined in 7.1.6.2 MAY be used whether or not a Delegation
Security Token was included in the request.

RightsDataLockerGet response ordering must be deterministic, and for this reason, in addition to
applying any sort that may be included in the request, a secondary sort based on the RightsTokenID
values is applied to the response. If no FilterClass parameters (see section 3.15) are included in the
request, the Coordinator SHALL apply the FilterClass
urn:dece:type:viewfilter:lastmodifieddate.

When a call to RightsLockerDataGet results in multiple pages, it is possible for the Locker to be updated
between page requests. In such circumstance, one or more Rights Tokens will be referenced more than
once across the pages, so Nodes SHOULD assume that any multi-page RightsLockerDataGet response may
contain repeated tokens. If the Node subscribes to push notification, it will be notified of the update and
be able to make a second RightsLockerDataGet call to obtain the updated Rights Token(s). Otherwise the
Node MAY choose to make a second RightsLockerDataGet call, using the OnOrAfter parameter or a
conditional request (etag), to determine if an update occurred.

If the request does not include a Delegation Security Token, the Coordinator SHALL exclude from the
response the Rights Token not issued by the requester.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 127

7.1.7 RightsTokenUpdate()

7.1.7.1 API Description

This API allows limited fields of the Rights token to be updated. Precisely which fields are updated
depends on Role.

7.1.7.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}

[BaseURL]/RightsToken/{RightsTokenID}

Method: PUT

Authorized Roles:

urn:dece:role:retailer[:customersupport]
urn:dece:role:dece:customersupport
urn:dece:role:coordinator:customersupport

Security Token Subject Scope:

urn:dece:role:user or None

If present, it must match to a User in active or pending status.

Ignored if submitted for the endpoint form without AccountID

Opt-in Policy Requirements:

Request Parameters: None

Request Body:

Element Attribute Definition Value Card.

//RightsToken/RightsTokenFull A fully populated RightsTokenFull object.

The update request SHALL match the current contents of the rights token except for the items being
updated.

Retailers may only update rights token that were purchased through them (that is, the NodeID in
PurchaseInfo matches that retailer’s NodeID). If a Security Token is presented, updates are made on

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 128

behalf of a User, so only Rights viewable by that User may be updated. Only the following fields may be
updated by the Retailer named in //PurchaseInfo/NodeID:

Element or Attribute Constraints

@ALID1 Update

@ContentID1 Update

SoldAs Update

RightsProfiles/PurchaseProfile Add, update, delete elements

RightsProfiles/PurchaseProfile/@MediaProfile Add, update, delete elements (e.g. change from HD to SD)

RightsProfiles/PurchaseProfile/DiscreteMediaRightsRem
aining

Not directly changeable (calculated by Coordinator from
corresponding DiscreteMediaRightsToken)

RightsProfiles/PurchaseProfile/DiscreteMediaRightsRem
aining/@ FulfillmentMethod

Not directly changeable (calculated by Coordinator from
corresponding DiscreteMediaRightsToken)

RightsProfiles/PurchaseProfile/CanDownload Update

RightsProfiles/PurchaseProfile/CanStream Update

LicenseAcqBaseLoc Add, update, delete

FulfillmentWebLoc Add, update, delete

FulfillmentManifestLoc Add, update, delete

StreamWebLoc Add, update, delete

PurchaseInfo Purchase info should not be updated unless the retailer
needs to correct an initial error.

PurchaseInfo/NodeID Not changeable (future policy review)

PurchaseInfo/RetailerTransaction Update

PurchaseInfo/PurchaseAccount Update. If this value is changed, the Retailer SHALL update
the PurchaseUser element as well.

PurchaseInfo/PurchaseUser Update (must be in Purchase Account). The UserID
supplied MAY be different than the User identified in the
Delegation Security Token.

PurchaseInfo/PurchaseTime Update

PurchaseInfo/TransactionType Update

@RightsLockerID Not changeable. Its value is created and managed by the
Coordinator.

1 Asset identifiers should almost never be updated. The system relies on these identifiers to link Rights Tokens to
content, define hierarchical metadata structures, map logical assets to digital (physical) assets etc. A Content
Provider may wish to change an Asset identifier if a mistake was made but even then it may be preferable to leave
the identifier as is rather than correct it.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 129

Table 38: Allowed Resource Changes for RightsTokenUpdate

Any element retrieved by a GET, including those “Not directly changeable” ones, SHALL be included in
an update request by the Retailer. However, elements marked as “Not directly changeable” in the table
above are ignored (left intact) in an update request, leaving the original value at the Coordinator. For
example, DiscreteMediaRightsRemaining information is managed exclusively by the Coordinator and is
ignored during an UPDATE.

If a request includes changes to other fields, that is, for which changes are not allowed, no changes to
such fields will be made, and an error will be returned.

The Rights Token status SHALL NOT be set to deleted using this API. The RightsTokenDelete API
should be used instead.

An update to a Rights Token may have secondary consequences on Discrete Media Rights, and the
Coordinator shall verify that the number of available Discrete Media Rights matches the updated
DiscreteMediaRightsRemaining. If the Coordinator is unable to adjust the number of Discrete Media
Rights Tokens, an error is returned. Discrete Media Rights are discussed in section 16.

7.1.7.3 Behavior

The Rights Token is updated. This is a complete replacement, so the update request must include all
data.

The Coordinator SHALL require that:

• The ALID attribute value is a valid identifier, with a corresponding LogicalAsset resource in
active status,

• The ContentID attribute value is a valid identifier with a corresponding BasicMetadata resource
in active status,

• When SoldAs is present

o All ContentID elements in the Rights Token’s SoldAs element contain a valid identifier
with a corresponding BasicAsset resource in active status,

o The identifier in the RightsTokenData/@ContentID attribute exists in one instance of
SoldAs/ContentID list, or within the Bundle referenced by SoldAs/BundleID

o If SoldAs contains a BundleID:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 130

 The BundleID is a valid identifier and corresponds to a Bundle resource in
active status (the ‘referenced Bundle’),

RightsTokenData/@ALID and RightsTokenData/@ContentID attributes correspond with ALID and
ContentID in one instance of a LogicalAssetReference element in the referenced Bundle.

When the update is the result of a user request, the Node SHALL include a valid Delegation Security
Token. Whenever a Delegation Security Token is included in the request, the Coordinator SHALL send an
email notification to all the Users in the Account.

The URI path that excludes the {AccountID} parameter is exclusively for the use of Retailer (Issuer only)
and its Customer Support subrole. Attempts to update Rights Tokens created by other retailers shall
result in a 403 Forbidden HTTP Status response.

Nodes SHALL NOT include a Delegation Security Token when using the URI path that excludes the
{AccountID} parameter. If a Delegation Security Token is included in this case, it will be ignored by the
Coordinator. If a Node has a valid, active Delegation Security Token, it SHOULD use the API form that
includes the {AccountID} parameter, unless the Node’s intent is to correct a Right.

RightsToken updates without an AccountID and Delegation Security Token is reserved for cases when a
Retailer needs to correct or update an existing Right. No email notification is sent when Rights are
updated using the URI path that excludes the {AccountID} parameter.

7.1.8 DownloadPlaybackLicenseReporting()

7.1.8.1 API Description

The DownloadPlaybackLicenseReporting API is used to record licensing at the Coordinator.

7.1.8.2 API Details

Path:

[bhost]/Account/{AccountID}/RightsToken/{RightsTokenID}/DPLicense

Method: POST

Authorized Roles:

urn:dece:role:retailer[:customersupport]

Security Token Subject Scope: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 131

Opt-in Policy Requirements: None

Request Parameters:

RightsTokenID is the unique identifier for a rights token
AccountID is the unique identifier for an Account

Request Body:

Element Attribute Definition Value Card.

License Defines the issued
playback license that is
being reported

dece:PlaybackLicense-
type

1

Response Body: None

7.1.8.3 Behavior

Nodes can use this API to report the playback-licenses issued. This API is available only at the batch ‘b’
host. Nodes SHALL include the following information in the request.

LicenseIssuanceDateTime

RequestingUserID

RightsTokenID

Additionally, Nodes can also indicate the Mediaprofile for which the license was issued. The
Coordinator shall allow all valid mediaprofiles as defined in section 6.5.3.

The following are Retailer-defined strings and may be included when reporting.

LicensingNodeID – Defaults to invoking node.

NodeLicenseID

PlaybackDeviceName

LicensingAuthorityName

Coordinator SHALL validate that the request body is syntactically valid, the RightsTokenID identified
in the request body matches the one in the request URL and SHALL respond with an HTTP 202 status
code (Accepted).

During post-processing, Coordinator SHALL validate that the User identified in the RequestingUserID
and the RightsToken identified in the RightsTokenID match existing User and RightsToken resources

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 132

respectively. Coordinator SHALL not validate the status of these resources or their current association
with one another. Errors identified during post-processing are written to the logs.

Note that the new resource is not accessible via a GET request at the Coordinator and therefore not
visible to Nodes.

The Coordinator will respond with a 503 status code (Service Unavailable) when the request cannot be
fulfilled due to service availability failures. Nodes will have to retry the request at a later time.

7.1.9 RightsTokenListCreate()

7.1.9.1 API Description

The RightsTokenListCreate API is used to a list of Rights Tokens to a Rights Locker in a single API call.

7.1.9.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/List

Method: POST

Authorized Roles:

urn:dece:role:retailer[:customersupport]

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: None

Request Body:

Element Attribute Definition Value Card.

RightsTokenList RightsTokenList
containing a list of
RightsTokenData
elements . All required
information SHALL be
included in the request.

dece:RightsLockerData-type 1

Response Body: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 133

7.1.9.3 Behavior

Nodes SHALL include at least one fully populated RightsToken in the payload. The list can contain a
maximum of 60 fully populated RightsTokens. Coordinator SHALL return an appropriate error when the
payload contains zero or more than 60 RightsToken elements.

The Coordinator SHALL require that:

• The AccountID path parameter is a valid identifier, with a corresponding Account resource in
active status; the AccountID attribute value in the request body matches the AccountID in the
request URL

• The RightsLockerID attribute value is a valid identifier, with a corresponding RightsLocker
resource and matches the RightsLockerID associated with the AccountID specified in the request
URL

In addition, all the validation requirements that apply to discrete RightsTokenCreate apply to this
flavor as well.

The request body is processed and when the first validation error occurs, further evaluations are
skipped and errors are returned. For example, Retailer posts a RightsTokenList payload in which
RightsToken 3 has invalid CID and RightsToken 17 has invalid ALID set. Validation fails for CID 3, further
evaluations are skipped and error Invalid CID – CID 3 is returned.

Coordinator will not add or change transaction type. (Billing will work as always, based on transaction
type per token.)

No DMR operations will be included. Retailers should utilize the DMRFulfill API for the same.

Successful requests will result in an HTTP 201 Created response, with the Location header returning the
URL of the RightsLockerDataGet API including the OnOrAfter query parameter set to the date and time
when Coordinator received the RightsTokenListCreate request and the byReference query parameter
(which is the default, but included for clarity). Upon successful creation, the Coordinator SHALL set the
RightToken/s to active status.

The Coordinator SHALL ensure the atomicity of this API call. In other words, the only possible outcomes
of this operation are that either all the RightsTokens requested have been created, or no resource was
created as a result of the API call. If any individual Rightstoken cannot be created, the entire list fails,
and error/s returned.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 134

7.2 Rights Token Resource

A Rights Token represents a User’s entitlement to a digital asset resource. Rights Tokens are defined in
four structures to accommodate the various authorized views of the Rights Token. Each succeeding
structure inherits the data elements of the preceding data structure, as depicted in the following
diagram.

Figure 13: Rights Token Resource

• RightsTokenBasic identifies the digital assets contained in the Rights Token, and the rights
profiles associated with the digital assets represented by the Rights Token.

• RightsTokenInfo extends RightsTokenBasic to include fulfillment details related to licensing,
downloading, and streaming the digital asset represented by the Rights Token.

• RightsTokenData extends RightsTokenInfo to include details about the User’s purchase of the
Rights Token, and the visibility constraints on the Rights Token.

• RightsTokenFull extends RightsTokenData to a complete view of the Rights Token’s data,
including the Rights Locker where the Right Token can be accessed by the User, as well as the
Rights Token status and status history.

• RightsTokenDetails provides an asset metadata populated version of the rights tokens in a list
(Locker), instead of the purchase profile centric view.. Clients may select this response variant
by means of the response=metadata query parameter.

• RightsTokenLocation provides devices with a means of obtaining only the download
information for a Rights Token. Clients may select this response variant by means of the
response=download query parameter.

RightsTokenFull

RightsTokenData

RightsTokenInfo

RightsTokenBasic

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 135

7.2.1 RightsToken Definition

Element Attribute Definition Value Card.
RightsToken dece:RightsTokenObject-

type

 RightsTok
enID

An identifier (unique to an
Account and a Node) for the
RightsToken, created by the
Coordinator. Nodes SHALL
NOT create nor alter the
RightsTokenID.

dece:EntityID-type 0..1

O
ne

 o
f:

RightsTokenBasic Representation of the Rights
Token (based on Policies and
other properties of the Rights
Token, and the associated
Account, User, and API Client)

RightsTokenBasic-type
RightsTokenInfo RightsTokenInfo-type
RightsTokenData RightsTokenData-type
RightsTokenFull RightsTokenFull-type

RightsTokenDetails RightsTokenDetails-type
RightsTokenLocation RightsTokenLocation

-type

PolicyList dece:PolicyList-type 0..1

Table 39: RightsToken Definition

7.2.2 RightsTokenBasic Definition

Element Attribute Definition Value Card.

RightsTokenBasic dece:RightsTokenBasic-type
 ALID The logical asset identifier for a

RightsToken
md:AssetLogicalID-type

 ContentID The content identifier for the digital asset
associated with the RightsToken

md:ContentID-type

SoldAs Retailer-specified product information
(see Table 41)

dece:RightsSoldAs-type 0..1

RightsProfiles The list of transaction profiles for the
RightsToken

dece:RightsProfileInfo-type

ResourceStatus See section 17.2 0..1

Table 40: RightsTokenBasic Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 136

7.2.3 SoldAs Definition

Element Attribute Definition Value Card.
SoldAs dece:RightsSoldAs-type
DisplayName The localized display name defined by the

retailer

dece:LocalizedString
Abstract-type

0..1

ProductID “ProductID” is any identifier used to
identify a product associated with this
Rights Token. DECE has no defined use for
this element, so it may be used at Retailer’s
discretion.

xs:string 0..1

O
ne

 o
f:

ContentID The content identifier for the digital asset
associated with the RightsToken, based on
how the retailer sold the asset (this MAY be
different from the RightsTokenBasic/
ContentID). The Coordinator SHALL verify
ContentIDs with established BasicAsset@
ContentIDs.

md:ContentID-type 1…n

BundleID dece:EntityID-type 0..1

Table 41: SoldAs Definition

7.2.4 RightsProfiles Definition

This structure describes the details of the purchase associated with a Rights Token.

Element Attribute Definition Value Card.

RightsProfiles dece:RightsProfilesInfo-type
PurchaseProfile See Table 43 dece:PurchaseProfile-type 0..n

Table 42: RightsProfiles Definition

7.2.5 PurchaseProfile Definition

Element Attribute Definition Value Card.

PurchaseProfile dece:PurchaseProfi
le-type

 MediaProfi
le

The digital asset profile (see Table 15) dece:AssetProfile-
type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 137

Element Attribute Definition Value Card.
 HighDyna

micRange
Boolean indicated the Right includes High
Dynamic Range (HDR). Default value is “false”.
This profile parameter may only be “true” in
PurchaseProfiles having a MediaProfile of
urn:dece:type:mediaprofile:hd or
urn:dece:type:mediaprofile:uhd

xs:boolean 0..1

 HighFrame
Rate

Boolean indicated the Right includes High Frame
Rate (HFR). Default value is “false”. This profile
parameter may only be “true” in PurchaseProfiles
having a MediaProfile of
urn:dece:type:mediaprofile:hd or
urn:dece:type:mediaprofile:uhd

xs:boolean 0..1

 WideColor
Gamut

Boolean indicated the Right includes Wide Color
Gamut. Default value is “false”. This profile
parameter may only be “true” in PurchaseProfiles
having a MediaProfile of
urn:dece:type:mediaprofile:hd or
urn:dece:type:mediaprofile:uhd

xs:boolean 0..1

 NextGenA
udio

Boolean indicated the Right includes Next
Generation Audio. Default value is “false”. This
profile parameter may only be “true” in
PurchaseProfiles having a MediaProfile of
urn:dece:type:mediaprofile:hd or
urn:dece:type:mediaprofile:uhd

xs:boolean 0..1

 ThreeD Boolean indicated the Right includes 3D. Default
value is “false”. This profile parameter may only
be “true” in PurchaseProfiles having a
MediaProfile of
urn:dece:type:mediaprofile:hd or
urn:dece:type:mediaprofile:uhd

xs:boolean 0..1

DiscreteMedia
RightsRemainin
g

 The collection of Discrete Media Rights available in
the Rights Token. The maximum quantity is
determined by the defined Ecosystem parameter
DISCRETE_MEDIA_LIMIT (specified in [DSystem]).
Changes to existing DiscreteMediaRights must be
made using the functions specified in section 16.1.

dece:DiscreteMedia
RightsRemaining-
type

0..1

CanDownload Boolean indicator of whether the RightsToken
allows downloading (defaults to TRUE)

xs:boolean

CanStream Boolean indicator of whether the RightsToken
allows streaming (defaults to TRUE)

xs:boolean

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 138

Table 43: PurchaseProfile Definition

7.2.6 DiscreteMediaRights Definition

The DiscreteMediaRightsRemaining type is an enumeration of Discrete Media Rights within a
RightsToken. A NULL set, or the absence of this element, is an indication that no discrete media rights
are present.

Element Attribute Definition Value Card.

DiscreteMedia
RightsRemaining

 Indicates any available
DiscreteMediaRights, as calculated
by the Coordinator (see section
16.1).

dece:DiscreteMediaRig
htsRemaining-type

extends
xs:positiveInteger

 FulfillmentMethod Indicates which fulfillment methods
are allowed given this Right.

xs:NMTokens 0..1

Table 44: DiscreteMediaRightsRemaining Definition

7.2.7 RightsTokenInfo Definition

RightsTokenInfo-type extends the RightsTokenBasic-type definition, and adds the following
elements:

Element Attribute Definition Value Card.

RightsTokenInfo dece:RightsTokenInfo
-type

LicenseAcqBaseLoc The base location from which the LAURL to
fulfill DRM License requests can be
constructed. See Section 12.2.2 in [DSystem]

xs:anyURI 0..1

FulfillmentWebLoc The network location from which the
desired DCC of the Right can be obtained.
See Section 11.1.2 in [DSystem]. This value
MAY be omitted if fulfillment is not required.

dece:ResourceLocatio
n-type

0…n

FulfillmentManifes
tLoc

 The network location from which the
fulfillment manifest can be obtained. See
Section 11.1.3 in [DSystem]. This value MAY
be omitted if fulfillment is not required.

dece:ResourceLocatio
n-type

0…n

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 139

Element Attribute Definition Value Card.
StreamWebLoc Identifies one or more Streaming endpoint

URI’s associated with the identified Media
Profile. This value SHALL be included if at
least one purchase profile includes
CanStream as true. The Coordinator will
return an error if StreamWebLoc is not
completed appropriately.

dece:ResourceLocatio
n-type

0..n

Table 45: RightsTokenInfo Definition

7.2.8 RightsTokenLocation Definition

Element Attribute Definition Value Card.

RightsTokenLocation dece:RightsTokenLocatio
n-type

 ALID The Logical Asset ID for the
RightsToken

dece:EntityID-type

 ContentID The Content ID for the RightsToken dece:EntityID-type
LicenseAcqBaseLoc The base location from which the

LAURL to fulfill DRM License
requests can be constructed. See
Section 12.2.2 in [DSystem]

xs:anyURI 0..1

FulfillmentWebLoc The network location from which
the desired DCC of the Right can be
obtained. See Section 11.1.2 in
[DSystem]. This value MAY be
omitted if fulfillment is not
required.

dece:ResourceLocation-
type

0…n

FulfillmentManifestLoc The network location from which
the fulfillment manifest can be
obtained. See Section 11.1.3 in
[DSystem]. This value MAY be
omitted if fulfillment is not
required.

dece:ResourceLocation-
type

0…n

StreamWebLoc Identifies one or more Streaming
endpoint URI’s associated with the
identified Media Profile. This value
MAY be omitted if streaming is not
required.

dece:ResourceLocation-
type

0..n

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 140

7.2.9 ResourceLocation Definition

Element Attribute Definition Value Card.

ResourceLocation-
type

 MediaProfile The media profile specific download location xs:anyURI 0..1
Location A network-addressable URI xs:anyURI
Preference An integer that indicates the retailer’s preference, if

more than one Location is provided. Higher integers
indicate a lower preference. Clients MAY choose any
Location based on its own deployment characteristics.
The Web Portal shall select the Location URL with
the lowest provided Preference value (or a
randomly selected Location if no Preference is
indicated) when displaying a Right.

xs:int 0..1

Table 46: ResourceLocation Definition

7.2.10 RightsTokenData Definition

RightsTokenData-type extends the RightsTokenInfo-type with the following elements:

Element Attribute Definition Value Card.

RightsTokenData dece:RightsTokenData-type extends
dece:RightsTokenInfo-type

PurchaseInfo See Table 48 dece:RightsPurchaseInfo-type

Table 47: RightsTokenData Definition

7.2.11 PurchaseInfo Definition

Element Attribute Definition Value Card.

PurchaseInfo dece:RightsPurchase
Info-type

NodeID The identifier of the retailer that sold the
RightsToken

dece:EntityID-type 0..1

RetailerTransaction A retailer-supplied string which may be used
to record an internal retailer transaction
identifier. This element is only visible to the
Retailer that created the Right.

xs:string 0..1

PurchaseAccount The Account identifier URI that the
RightsToken was initially issued to

dece:EntityID-type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 141

Element Attribute Definition Value Card.
PurchaseUser The User identifier URI under which the

Right was initially issued to the Account

dece:EntityID-type

PurchaseTime The date and time the Right was issued by
the Retailer

xs:dateTime

TransactionType A DECE-defined code provided by the
Retailer to indicate the type of the
transaction (for example an EST transaction
or a disc-to-digital transaction). The Retailer
SHALL only use values published by DECE.
This element is only visible to the Retailer
that created the Right.

xs:string 0..1

Table 48: PurchaseInfo Definition

TransactionType information is used for DECE billing purposes and analysis purposes.

7.2.12 RightsTokenFull Definition

RightsTokenFull-type is a RightsTokenData-type with additional metadata information and the
RightsLockerID.

Element Attribute Definition Value Card.

RightsTokenFull dece:RightsTokenFull-
type extends
RightsTokenData-type

RightsLockerID The system-wide unique identifier for a
Rights Locker where a given token resides

dece:EntityID-type

Table 49: RightsTokenFull Definition

7.2.13 RightsTokenDetails Definition

RightsTokenDetails-type provides a metadata populated response for the Rights Token. The data
is determined by the Coordinator based on the associated BasicAsset metadata. The definition column
in the following table describes the mapping to the corresponding BasicAsset elements.

To determine which language the response should provide, the Coordinator first consults any provided
Accept-Lang HTTP Header, then consults the preferred language (if any) associated with the User of the
request, then consults to default language identified in the corresponding BasicAsset’s LocalizedInfo,
and finally, resorts to English (en).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 142

RatingSet selection is performed as a best effort by the Coordinator. If the User associated with the
request has a Country specified in their profile, the Coordinator will include the rating systems
associated with the applicable Geography Policy (see Appendix F). If such a determination cannot be
made, the Coordinator may use any method to determine the appropriate RatingSet (or include them
all). Should a full list of Ratings be required by the client, they may obtain them via the BasicAsset itself,
where all ratings are returned.

Note: This structure, RightsTokenDetails, is slated for deprecation. It is recommended that
implementations avoid its use. Recommend usage is RightsTokenInfo plus BasicMetadata queries.
Future implementation may include a modified version of this element.

Element Attribute Definition Value Card.

RightsTokenDetails dece:RightsTokenDeta
ils-type

 ALID The Logical Asset identifier of the Right dece:EntityID-type
 ContentID The ContentID of the Right dece:EntityID-type
 Language The language the metadata is presented

in. Corresponds to the [MLMeta] use of
the Language attribute in
md:MDBasicDataType See note
above on language selection.

xs:language

TitleDisplay60 Corresponds to the
BasicData/LocalizedInfo/TitleDisplay60
element

xs:string

ArtReference Corresponds to the
BasicData/LocalizedInfo/ArtReference
element

xs:anyURI 0..n

Summary190 Corresponds to the
BasicData/LocalizedInfo/Summary190
element

xs:string

Genre Corresponds to the
BasicData/LocalizedInfo/Genre element

xs:string 0..n

RunLength Corresponds to the BasicData/RunLength
element

xs:duration 0..1

WorkType Corresponds to the BasicData/WorkType
element

xs:string

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 143

Element Attribute Definition Value Card.
RatingSet Corresponds to the BasicData/RatingSet

element

md:ContentRating-
type

0..1

Table 50: RightsTokenDetails-type

7.2.14 RightsTokenList Definition

Element Attribute Definition Value Card.

RightsTokenList dece:RightsLocke
rData-type

 Group:
dece:ViewFilterAttr-
type

Response filtering
information, see section 17.5

dece:EntityID-
type

 RightsLockerID The system-wide unique
identifier for a Rights Locker
where a given token resides

dece:EntityID-
type

 AccountID The unique identifier for the
Account

dece:EntityID-
type

O
ne

 o
f:

RightsTokenReference Rights Token identifier
augmented with
creation/update date
information

dece:RightsToken
Reference-type

0..n

RightsToken Rights Token object. See
7.2.1

dece:RightsToken
Object-type

0..n

Table 51: RightsLockerData-type Definition

The RightsTokenReference-type is defined as follows:

Element Attribute Definition Value Card.

 RightsTokenID dece:EntityID-type
 ContentID md:ContentID-type
 CurrentStatus See section 17.2 dece:DatedEntityElementAttrGroup-

type

 DatedElementAttrGroup-type

Table 52: RightsTokenReference-type Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 144

Element Attribute Definition Value Card.

 DatedElementAttrGroup-
type

 dece:DatedEntityElement
AttrGroup-type

 CreatedDate Creation date of the resource xs:dateTime 0..1
 UpdatedDate Last update date of the resource xs:dateTime 0..1

Table 53: DatedEntityElementAttrGroup-type Definition

7.2.15 License-type Definition

Element Attribute Definition Value Card.

License dece:License-type
LicensingNodeID The node that issued the

playback license. Defaults to
the node that reported the
license at the Coordinator.

dece:EntityID-type

LicenseIssuanceDateTime Date and time when the
playback license was issued

xs:dateTime

RequestingUserID The User that initiated the
license reporting.

dece:EntityID-type

RightsTokenID Identifier of the RightsToken
that holds the asset for which
the license was issued.

dece:EntityID-type

MediaProfile MediaProfile for the
RightsToken

dece:AssetProfile-type 0..1

NodeLicenseID Unique DRM Identifier xs:string 0..1
PlaybackDeviceName Retailer-defined string xs:string 0..1
LicensingAuthorityName Retailer-defined string xs:string 0..1
SubDividedGeolocation Identifies an approximate

geographic location of the
stream client, when
available.

dece:SubDividedGeolocation-
type

0..1

Table 544: License-type Definition

7.2.16 Rights Token Status Transitions

 The possible Status values are: active, pending, deleted, and other.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 145

7.2.17 Rights De-Identification Process

Rights Tokens with a status of urn:dece:type:status:deleted for
DCOORD_DEIDENTIFY_RIGHT_THRESHOLD, SHALL be modified by the Coordinator as follows.

• //PurchaseInfo/PurchaseAccount SHALL be changed to a unique anonymized value to dissociate
the Account from the Rightstoken

• //PurchaseInfo/PurchaseUser SHALL be changed to a unique anonymized value to dissociate the
User from the Rightstoken

• The AccountID and requesting UserID SHALL be changed to a unique anonymized value for all
Discrete Media tokens and Discrete Media Token History associated with the RightsToken.

The AccountID and requesting UserID SHALL be changed to a unique anonymized value for all stream
data and stream history associated with the RightsToken.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 146

8 License Acquisition

Note: Licensing of content to devices is now exclusively the responsibility of Retailers, as allowed
by agreements by Content Providers. The Coordinator no longer facilitates content licening.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 147

9 Domains

Note: Management of DRM systems is now exclusively the responsibility of Retailers, as allowed
by agreements by Content Providers. The Coordinator no longer facilitates content licening or
Domain management.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 148

10 Legacy Devices

Note: This section 10 is not currently implemented and subject to change..

A product or application that is not a compliant DECE Device (as specified in [DSystem]) but is allowed to
have Content delivered to it by a Retailer is considered a Legacy Device.

10.1 Legacy Device Functions

Because nothing can be assumed of a Legacy Device’s compatibility with the DECE ecosystem, it is
envisioned that a single Node will: manage the Legacy Device’s content in a proprietary fashion and act
as a proxy between the Legacy Device and the Coordinator. The Coordinator must nonetheless be able
to register a Legacy Device in the Account so that Users can see the corresponding information in the
Web Portal. To enable this, a set of simple functions is defined in the subsequent sections.

10.1.1 LegacyDeviceCreate()

10.1.1.1 API Description

This function creates a new Legacy Device and adds it to the Account provided a Device slot is available.

10.1.1.2 API Details

Path:

[BaseURL]/Account/{AccountID}/LegacyDevice

Method: POST

Authorized Roles: urn:dece:role:retailer[:customersupport]

Request Parameters: None

Security Token Subject Scope:

urn:dece:role:user:class:standard
urn:dece:role:user:class:full

Applicable Policy Classes: N/A

Request Body:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 149

Element Attribute Definition Value Card.

LegacyDevice dece:DeviceInfo-type

Response Body: None

10.1.1.3 Behavior

The Coordinator first verifies that the maximum number of Legacy Devices has not been reached and
the maximum number of total Devices has not been reached. If not, the Legacy Device information is
stored in the Account and the associated identifier created, if required.

The DeviceID can be used, in conjunction with the Node’s DeviceManagementURL, to calculate the
Node’s endpoint for servicing a Legacy Device by postpending the parameter deviceID=[DeviceID] the
the DeviceManagementURL. If the DeviceManagementURL includes other query parameters, the
deviceID parameter is appended with the “&” (ampersand) reserved character, otherwise a new query
segment is postpended. For example:

https://devices.example.com/manage?deviceID=82937dahdiaj93
https://devices.example.com/manage?type=x-type&deviceID=82937dahdiaj93

10.1.2 LegacyDeviceDelete()

10.1.2.1 API Description

10.1.2.2 API Details

Path:

[BaseURL]/Account/{AccountID}/LegacyDevice/{DeviceID}

Method: DELETE

Authorized Roles:

urn:dece:role:retailer[:customersupport]
urn:dece:role:dece:customersupport
urn:dece:role:coordinator:customersupport

Request Parameters:

AccountID is the unique identifier for an Account
DeviceID is the unique identifier for a Device

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 150

Security Token Subject Scope:

urn:dece:role:user:class:standard
urn:dece:role:user:class:full

Applicable Policy Classes: N/A

Request Body: None

Response Body: None

10.1.2.3 Behavior

Only the Node that created the Legacy Device may delete it (besides the customer support roles as
defined above).

10.1.3 LegacyDeviceUpdate()

10.1.3.1 API Description

10.1.3.2 API Details

Path:

[BaseURL]/Account/{AccountID}/LegacyDevice/{DeviceID}

Method: PUT

Authorized Roles:

urn:dece:role:retailer[:customersupport]

Request Parameters: None

Security Token Subject Scope:

urn:dece:role:user:class:standard
urn:dece:role:user:class:full

Applicable Policy Classes: N/A

Request Body:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 151

Element Attribute Definition Value Card.

LegacyDevice dece:DeviceInfo-type

Response Body: None

10.1.3.3 Behavior

The Rights Locker verifies that the device identifier corresponds to a known (that is existing) Device
resource. If so it replaces the data with the element provided in the request. Only the Node that created
the Legacy Device may update it.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 152

11 Streams

Streams allow a User to view the content of digital assets (to which the User is entitled by virtue of a Rights
Token in the Account’s Rights Locker). They are not artifacts in the same way that DVDs are, rather they
are real-time representations of digital content.

11.1 Stream Functions

Stream resources provide reservation and stream information to authorized Roles.

11.1.1 StreamCreate()

11.1.1.1 API Description

A LASP SHALL call StreamCreate() to request a streaming session lease for specified content on behalf of
an Account or User.

A LASP NEED NOT wait for a Coordinator response before starting the associated streaming session.

The Coordinator grants authorization to create a stream by responding with a HTTP 201 Created status
that includes the newly created stream resource in the HTTP Location header. The stream lease that is
created includes an expiration timestamp (Expiration).

If the Coordinator responds with any HTTP response other than 201 Created, 408 Request Timeout or 5xx
Service Errors, the LASP SHALL NOT begin the streaming session, or if the LASP has started the streaming
session the LASP SHALL terminate the streaming session.

LASP streaming sessions are global to an account and are not allowed to exceed the duration defined by
the Ecosystem parameter DYNAMIC_LASP_AUTHENTICATION_DURATION (specified in [DSystem]),
without re-authentication.

The requesting Node MAY supply a TransactionID to the Coordinator for its’ own use.

The Coordinator must verify the following criteria to grant the request:

• The Account possesses the Rights Token.

• The number of active LASP sessions is less than the number determined by the defined
Ecosystem parameter LASP_SESSION_LIMIT (as defined in [DSystem] Section 16)

• The User has requisite stream creation privileges and meets the Parental Control policy
requirements. (This requirement only applies to the urn:dece:role:lasp:dynamic Role.)

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 153

If granted, The Coordinator SHALL establish an initial stream lease ExpirationDateTime of
RENEWAL_MAX_ADD from the time this API is invoked.

11.1.1.2 API Details

Path:

[BaseURL]/Account/{AccountID}/Stream

Method: POST

Authorized Roles:

urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]

Security Token Subject Scope:

For Dynamic LASP: urn:dece:role:user
For Linked LASP: urn:dece:role:account

Opt-in Policy Requirements: None

Request Parameters: AccountID is the unique identifier for an Account

Request Body:

Element Attribute Definition Value Card.

Stream Defines the stream that is
being requested

dece:Stream-type

The Node SHALL NOT include the Stream/@StreamHandleID in the request.

Response Body: None

If no error conditions occur, the Coordinator SHALL respond with an HTTP 201 status code (Created) and
a Location header containing the URL of the created resource.

The resulting resource, when created, will include the {streamhandleid}, and is considered a DECE
assigned identifier, whose syntax will be:

<STREAMHANDLEID> ::= "urn:dece:streamhandleid:" <streamhandleiduniquepart>

where <streamhandleiduniquepart> is defined as one or more characters that are in the set 'unreserved'
as defined in [RFC3986], Section 2.3.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 154

11.1.1.3 Behavior

The RightsTokenID in the request SHALL be for the content being requested.

When invoked by a Dynamic LASP, the RequestingUserID element SHALL be supplied. A Linked
LASP MAY provide the RequestingUserID element. If provided, the Coordinator SHALL match its value
with the User associated with the presented Delegation Security Token.

Prior to enabling a stream, the Coordinator validates that an Account has a Right to stream as
determined by the existence of an active Rights Token associated with that ALID in the
associated Account.

The Coordinator SHALL maintain stream description parameters for all streams, both active and inactive
(see Table 56 for details). The Coordinator will establish the initial stream parameters
ResourceStatus, ExpirationDateTime, and StreamHandleID.

The Coordinator SHALL set Account/ActiveStreamCount to reflect the number of available streams.

A newly created stream SHALL NOT have an expiration date and time that exceeds the expiration date
and time of the provided Security Token.

11.1.2 StreamListView(), StreamView()

11.1.2.1 API Description

This API supports LASP, Web Portal and CS functions. The data returned is dependent on the Role
making the request.

11.1.2.2 API Details

Path:

[BaseURL]/Account/{AccountID}/Stream/{StreamHandleID}

[BaseURL]/Account/{AccountID}/Stream/List

Method: GET

Authorized Roles:

urn:dece:role:portal[:customersupport]
urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:dece:customersupport

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 155

urn:dece:role:retailer[:customersupport]
urn:dece:role:accessportal[:customersupport]

Security Token Subject Scope:
For Linked LASP: urn:dece:role:account

otherwise: urn:dece:role:user

Opt-in Policy Requirements: urn:dece:type:policy:ManageAccountConsent as described in Section
11.1.6.

Request Parameters:

AccountID is the unique identifier for an Account
StreamHandleID is the unique identifier for an active Stream.

Request Body: None

Response Body:

When StreamHandleID form of the invocation URL is used, Stream is returned.

Element Attribute Definition Value Card.

Stream dece:Stream-type

When the ‘/List’ form of the invocation URL is used, StreamList is returned.

Element Attribute Definition Value Card.

StreamList dece:StreamList-type

11.1.2.3 Behavior

A Node makes this request on behalf of an authorized User, and the Coordinator’s response depends on
the requestor:

Stream Visibility SHALL be in accordance with Table in 11.1.67.

If the requestor is a Role other than LASP Customer Support StreamList responses for streams that refer
to Content that are not visible to a User based on their Parental Control settings SHALL contain

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 156

StreamClientNickname, if present, and, SHALL contain a RightsTokenID of
urn:dece:stream:generic.

If the requestor is not a member of the same Organization as the Stream creator, the following
information SHALL NOT be returned:

• //Stream/TransactionID

• //Stream/SubDividedGeolocation

The above restriction does not apply to the urn:dece:role:portal Role.

As User IDs are Node-specific, RequestingUserID is returned in a form suitable for the requesting
Node.

The Coordinator will retain stream information for a configurable period, which SHALL NOT be less than
DCOORD_STREAM_INFO_MIN_RETENTION. Stream resources created beyond that date range will not
be available using any API.

The sort order of the response SHALL be based on the Streams’ created datetime value, in descending
order.

11.1.3 Checking for Stream Availability

StreamList provides the AvailableStreams attribute, to indicate the number of available streams,
as not all active streams are necessarily visible to the LASP. Nevertheless, it is possible that, depending
on a delay between a StreamListView() and StreamCreate() message, additional streams may be created
by other Nodes. LASPs should account for this condition in their implementations, but SHALL NOT use
StreamCreate() as a mechanism for verifying stream availability.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 157

11.1.4 StreamDelete()

11.1.4.1 API Description

The LASP uses this message to inform the Coordinator that the content is no longer being streamed to
the user. The content could have been halted due to completion of the content stream, user action to
halt (rather than pause) the stream, or a time out occurred exceeding the duration of streaming content
policy.

Streams which have expired SHALL have their status set to deleted state upon expiration by the
Coordinator.

11.1.4.2 API Details

Path:

[BaseURL]/Account/{AccountID}/Stream/{StreamHandleID}

Method: DELETE

Authorized Roles:

urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]

Security Token Subject Scope:
For Dynamic LASP: urn:dece:role:user
For Linked LASP: urn:dece:role:account

Opt-in Policy Requirements: None

Request Parameters:

AccountID is the unique identifier for an Account
StreamHandleID is the unique identifier for an active stream.

Request Body: None

Response Body: None

11.1.4.3 Behavior

The Coordinator records the status of the Stream in the <Current> status element as deleted,
indicating that the stream is inactive. The <AdminGroup> element of ResourceStatus is updated with
the current date and time and the identifier of the Node that closed the stream.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 158

A Stream may only be deleted by the Node which created it (or by any customer support Node).

Deleted streams are maintained for a period of time at the discretion of the Coordinator, but not less
than DCOORD_STREAM_INFO_MIN_RETENTION.

11.1.5 StreamRenew()

If a LASP has a need to extend a lease on a stream reservation, they may do so via the StreamRenew()
request.

The HTTP HEAD Method is not supported on this URL.

11.1.5.1 API Description

The LASP uses this message to inform the Coordinator that the expiration of a stream needs to be
extended.

The Coordinator will support this API at the [pHost] form of the URL.

11.1.5.2 API Details

Path:

[BaseURL]/Account/{AccountID}/Stream/{StreamHandleID}

Method: PUT

Authorized Roles:

urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]

Security Token Subject Scope:
For Dynamic LASP: urn:dece:role:user
For Linked LASP: urn:dece:role:account

Opt-in Policy Requirements: None

Request Parameters:

AccountID is the unique identifier for an Account
StreamHandleID is the unique identifier for an active stream.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 159

Request Body:

The Stream object dece:Stream-type is provided in the request, incorporating the requested new
ExpirationDateTime.

Element Attribute Definition Value Card.

Stream dece:Stream-type

Response Body:

If no error conditions occur, the Coordinator SHALL respond with an HTTP 200 OK status code. The
updated Stream is included in the body of the response (<Stream-type>).

11.1.5.3 Behavior

A LASP MAY request up to DCOORD_STREAM_RENEWAL_MAX_ADD hours for the identified
StreamHandle.

The Coordinator SHALL determine the allocated ExpirationDateTime value based on a number of
parameters including the following rules:

• Streams may only be renewed for a maximum of DCOORD_STREAM_MAX_TOTAL hours. New
streams must be created once a stream has exceeded the maximum time allowed.

• Stream lease renewals SHALL NOT exceed the date time of the expiration of the Security Token
provided to this API.

• The ExpirationDateTime shall satisfy the following constraints..
 a) Must not extend the prior ExpirationDateTime by more than
DCOORD_STREAM_RENEWAL_MAX_ADD hours.
 b) Must not extend the prior ExpirationDateTime by more than
DCOORD_STREAM_MAX_TOTAL hours from the timepoint of stream creation.

The coordinator shall apply the following validation constraints on the elements of the supplied Stream
object.

• The StreamHandleID shall match to that of an existing active stream for the Account i.e. must
match the one in the URL.

• The following elements shall be ignored by the coordinator and the values for these elements
of stream object held at the Coordinator shall be unchanged.
 a) RequestingUserID
 b) RightsTokenID

• The SubDividedGeolocation may change as long as the value complies with general
requirements (syntax constraints).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 160

• The ResourceStatus value shall be ignored and shall be set by Coordinator according to system
determination.

• The coordinator shall modify the Stream object after satisfying validation constraints with that
supplied in the PUT request.

If the Stream has already reached DCOORD_STREAM_MAX_TOTAL (prior to this renewal), a new Stream
must be created and the Coordinator SHALL respond with the StreamRenewalMaximumTimeReached
error code.

If Dynamic LASPs require renewal of a stream that exceeds the Security Token expiration, such LASPs
SHALL request a new Security Token. The Coordinator MAY allow a renewal up to the validity period of
the Security Token.

LASPs SHOULD keep an association between their local Stream accounting activities, and the expiration
of the Coordinator Stream resource. Since most LASP implementations support pause/resume features,
LASPs will need to coordinate the Stream lease period with the Coordinator, relative to any
pause/resume activity. LASPs SHALL NOT provide streaming services beyond the expiration of the
Stream resource.

11.1.6 Batch Stream Reporting

In some circumstances, LASPs may be required to report Stream activity but not utilize the Coordinator
to enforce the LASP_SESSION_LIMIT. In such cases, the batch stream reporting API is used to notify the
Coordinator of historical stream activity of an Account.

11.1.6.1 API Details

Path:

[bhost][versionPath]/Account/{AccountID}/Stream

Method: POST

Authorized Roles:

urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]

Security Token Subject Scope:

None. If a Delegation Security Token is provided, it is ignored.

Opt-in Policy Requirements: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 161

Request Parameters: AccountID is the unique identifier for an Account

Request Body:

Element Attribute Definition Value Card.

Stream Defines the stream that is
being requested

dece:Stream-type

The StreamHandleID attribute SHALL NOT be included. Its value will be set by the Coordinator.

The RequestingUserID and RightsTokenID elements are mandatory.

The ExpirationDateTime element SHOULD NOT be included. If included, its value will be discarded
by the Coordinator.

Unlike other APIs, the //ResourceStatus/Current SHALL be included in the request. The
CreationDate and DeletionDate attributes indicate the Streams start date/time and ending
date/time. The Value element SHALL be set to urn:dece:type:status:deleted.

Response Body: None

11.1.6.2 Behavior

The RightsTokenID identified in the request body SHALL be for the content being reported.

Coordinator SHALL validate that the request body is syntactically valid, reported datetime range is valid
and SHALL respond with an HTTP 202 status code (Accepted).

During post-processing, Coordinator SHALL validate that the User identified in the RequestingUserID
and the RightsToken identified in the RightsTokenID match existing User and RightsToken resources
respectively. Coordinator SHALL not validate the status of these resources or their current association
with one another. Errors identified during post-processing are written to the logs.

Unlike the real-time StreamCreate API defined in Section 11.1.1, no resource will be created. The
Coordinator simply records the Stream activity for reporting purposes.

The Coordinator will respond with a 503 status code (Service Unavailable) when the request cannot be
fulfilled due to service availability failures. Nodes will have to retry the request at a later time.

11.1.7 Stream Visibility Rules

The following table describes the rules the Coordinator SHALL enforce to determine Stream visibility and
access to Stream API calls.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 162

Role Stream
Creator

Same
Org.

MAC StreamListView,
Stream View

StreamRenew StreamDelete

Active Deleted

LASP/CS

YES YES
N/A

NO

YES

NO
YES

NO

Non-LASP/CS NO N/A
YES

NO

Web Portal N/A N/A N/A

Legend

• Role
o ‘LASP/CS’ designates LASP and the associated Customer Support Role.
o ‘Non-LASP/CS’ represents Authorized Roles other than LASPs and LASP Customer

Support Roles.

• ‘Stream Creator’ is whether or not the requesting Node is the Node that created the stream.
• ‘Same Org.’ indicates whether the requesting Node is in the same organization as the Stream

Creator Node.
• ‘MAC’ refers to a granted Manage Account Consent.

• ‘N/A’ means the condition is not applicable.

Notes

• A ‘Stream Creator’ is implicitly in the ‘Same Org.’
• Non-LASPs cannot be Stream Creators

• Streams reported via the Batch Stream Reporting are NOT returned in StreamListView API

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 163

11.2 Stream Types

11.2.1 StreamList Definition

The StreamList element describes a list of Streams. Streams are bound to Accounts, not to Users.

Element Attribute Definition Value Card.

StreamList dece:StreamList-type

 ActiveStre

amCount
Number of active streams xs:int 0..1

 AvailableS
treams

Number of additional streams
possible

xs:int 0..1

Stream dece:Stream-type 0..n

Table 55: StreamList Definition

11.2.2 Stream Definition

The Stream element describes a stream, which may be active or inactive.

Element Attribute Definition Value Card.

Stream dece:Stream-type
 StreamHa

ndleID
Unique identifier for the
stream. It is unique to the
Account, so it does not need
to be handled as an
identifier. The Coordinator
must ensure it is unique.

dece:EntityID-type 0..1

StreamClientNickname An optional human readable
string representing the
customer’s stream client that
may be used to aid a User or
Customer Support function.

xs:string 0..1

RequestingUserID The User that initated the
Stream.

dece:EntityID-type 0..1

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 164

Element Attribute Definition Value Card.
RightsTokenID Identifier of the RightsToken

that holds the asset being
streamed. This provides
information about what
stream is in use (particularly
for customer support)

dece:EntityID-type

TransactionID Transaction information
provided by the LASP to
identify its transaction
associated with this stream.
A TransactionID need not be
unique to a particular stream
(that is, a transaction may
span multiple streams). Its
use is at the discretion of the
LASP

xs:string 0..1

ExpirationDateTime xs:dateTime 0..1
SubDividedGeolocation Identifies an approximate

geographic location of the
stream client, when
available.

dece:SubDividedGeolocat
ion-type

0..1

ResourceStatus Whether or not stream is
considered active (that is,
against the count).

dece:ElementStatus-type 0..1

Table 56: Stream Definition

11.3 Stream Status Transitions

The possible Status values are: active and deleted.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 165

12 Account Delegation

12.1 Types of Delegations

Account delegation (or “linking”) is the process of granting Nodes access to certain information from the
Coordinator on behalf of Users without an explicit Coordinator login. LASPs (both Linked and Dynamic),
Access Portal and Retailers are able to request such delegation.

The policy classes defined in section 5.5 enable specific APIs for the Node or Nodes identified in the
Policy. These privileges are identified by consent policies established at the Account and User levels.
Delegations are obtained by establishing a Delegation Security Token between the Coordinator and the
Node or Nodes, as specified in [DSecMech].

In order for a Node to demonstrate that delegation has occurred, it SHALL present the Delegation
Security Token using the REST binding and Delegation Security Token profile specified in [DSecMech].

Delegations occur between Nodes and the Coordinator, and may either be at the Account level, or the
User level, depending on the Role of the Node being linked. These linkages may be revoked, at any time,
by the User or the Node. The appropriate Delegation Security Token Profile defined in [DSecMech]
SHALL specify the mechanisms for the creation and revocation of these delegations.

Nodes MAY be notified using the Delegation Security Token specific mechanism when a link is deleted,
but Nodes should assume delegations may be revoked at any time and gracefully handle error messages
when attempting to access a previously linked User or Account.

The Coordinator provides interfaces are provided to facilitate the collection of consent and the
provisioning of Policies within the Coordinator.

LASPs (both Linked and Dynamic), Access Portal and Retailers SHALL support at least one Delegation
Security Token profile defined in [DSecMech]. Support for the UserValidationTokenCreate API method
defined in section 14.1.7.4 is optional for these Roles.

12.1.1 Delegation for Rights Locker Access

Retailers, Dynamic LASPs and Linked LASPs can be granted the right to access an Account’s Rights
Locker. The default access is for a Retailer Node to only have access to Rights tokens created by that
Retailer Node. A LASP Node always has rights to all Rights Tokens (although with restricted detail). For
example, if Retailer X creates Rights token X1 and Retailer Y creates Rights token Y1, X can only access
X1 and Y can only access Y1.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 166

Policies, established by a full-access user, enable a Retailer Node to obtain access to the entire Rights
Locker, governed by the scope of the Security Token issued. The Authorization Matrix provided in

7 Allowed to invoke the URI endpoint that excludes the {AccountID} parameter.

Table 37 details the nature of the policies which control the visibility of rights tokens in the Rights
Locker. Linked LASPs (role: urn:dece:role:lasp:linked) only link at the Account level, and have
limited access to the entire Rights Locker as detailed in the matrix.

Access shall be granted in the context of specific Users associated with the Delegation Security Token for
retailers and DSPs This is established through policies established at the Coordinator at both the User
and Account level. Rights Tokens which include ViewControl settings remain unavailable to Users who
are not identified within the Rights Tokens. More specifically, if a User is not included in the list of
AllowedUser elements, Rights tokens with that User will not be visible to the Node. In the case where
the AllowedUser list is null, Rights tokens Access Rights SHALL be accessible to all users.

12.1.2 Delegation for Account and User Administration

The Coordinator allows Nodes to create and administer Users in an Account when those Nodes have
both urn:dece:type:policy:ManageAccount and
urn:dece:type:policy:EnableManageUserConsent policies enabled, and one or more Users
within the Account have enabled the urn:dece:type:policy:ManageUserConsent policy.

12.1.3 Delegation for Linked LASPs

The Linked LASP linking process allows a Linked LASP to stream Content for an Account without
requiring a User to login on the LASP Client receiving the stream. Linked LASP delegation differs from
other delegations only in that:

There is a limit to the number of Linked LASPs associated with an Account as specified in [DSystem]
Section 16.

Delegation Security Tokens are evaluated at the Account level (as apposed to the User level, as with
most Security Token uses)

The lifespan of a Delegation Security Token to a Linked LASP is effectively unbounded. Delegation
Security Token profiles specify the actual longevity, and the lifespan must be present in the Delegation
Security Token itself.

The effect of Account level policy evaluation of Delegation Security Tokens during API invocation
eliminates the incorporation of any User level Policies within the Account. For example, Parental Control
and ManageUserConsent policies are not consulted by the Coordinator, and will therefore have no

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 167

influence on the construction of the response to the API request. Section 5.5.2 specifies the User level
policies that would be ignored in these circumstances.

Linked LASPs, like dynamic LASPs, are not assumed to have a license to all DECE content, so not
everything in the Rights Locker will be streamable.

12.2 Initiating a Delegation

To initiate a delegation and establish a Delegation Security Token between the Node and the
Coordinator, Nodes shall utilize the Delegation Security Token specific mechanisms defined in
[DSecMech] or as defined in this section. Currently defined Delegation Security Token Profiles require
that Nodes initiate the link. That is, delegations cannot be initiated by the Web Portal, because the Web
Portal does not maintain lists of Nodes.

12.3 Revoking a Delegation

Users and Nodes may revoke a delegation at any time, and mechanisms should be provided both by the
Node, as well as the Web Portal. Delegation token profiles specified in [DSecMech] shall specify one or
more mechanisms to provide for revocation of delegations initiated by either party.

A delegation SHALL be revocable at any time by User request through the Web Portal. Nodes may
provide a mechanism for a User to request revocation of delegations.

12.3.1 Authorization

Upon linking, the Coordinator provides the Node with an appropriate Delegation Security Token, as
defined in [DSecMech] that can subsequently be used to access Coordinator APIs on behalf of the User.
The Coordinator SHALL verify that the Delegation Security Token presented to the API is well-formed,
valid, and issued to the Node presenting the token. If the presented token is invalid, the Coordinator
shall respond with an error response appropriate for the token employed, and defined in the token
profile of [DSecMech].

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 168

13 Accounts

An Account represents a group of system Users, and their ability to access Rights Tokens in the
Account’s Rights Locker. The conventional model for an Account is a family living under the same roof,
but in fact an Account’s Users may be unrelated and geographically dispersed.

The maximum allowed active User count is determined by the defined Ecosystem parameter
ACCOUNT_USER_LIMIT (specified in [DSystem] section 16). Users which are in deleted,
mergedeleted, forcedeleted or deidentified status SHALL NOT be considered when
calculating the total number of users within an Account.

The Account object maintains information about the DisplayName and Country for the Account, as well
as its status. It is also the resource to which the account-level policies, discussed in section 5.5.1 are
applied.

Unless otherwise noted, APIs evaluated at the Account level SHALL be rejected when the targeted
Account’s status is not active. Note that RightsTokenCreate() MAY be invoked for an Account with
pending status as documented under that API.

13.1 Account Functions

The Account functions ensure that an Account is always in a valid state. The AccountUserCreate function
creates the Account and the Rights Locker along with the first user. Several Account creation use cases
begin with a user’s identification of content to be acquired. Invocation of the AccountUserCreate API is
then followed by the user obtaining a Rights Token (that is, invocation the RightsTokenCreate API).

Once created, an Account cannot be directly removed from the system by invoking an API. Instead the
AccountDelete API changes the status of the Account to urn:dece:type:status:deleted. This
allows Account deletion to be reversed (by changing the Account status to
urn:dece:type:status:active). The status of the associated resources (such as Rights Tokens and
Users) remains unchanged. Furthermore, the Account SHALL be considered active when it is in any
status other that deleted, forcedeleted, mergedeleted or deidentified.

During its lifecycle, an Account’s status undergoes changes from one status to another (for example,
from urn:dece:type:status:pending to urn:dece:type:status:active). The Status element
(in the ResourceStatus element) may have the following values.

Account Status Description
urn:dece:type:status:active Account is active (the normal condition for an Account)
urn:dece:type:status:archived Account is inactive but remains in the database

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 169

urn:dece:type:status:blocked Account has been blocked, possibly for an administrative reason
urn:dece:type:status:deleted Account has been deleted
urn:dece:type:status:forcedeleted An administrative delete was performed on the Account.
urn:dece:type:status:other Account is in a non-active, but undefined state
urn:dece:type:status:pending Account is pending but not fully created
urn:dece:type:status:mergedeleted Indicates that the resource was force deleted as part of the merge

process
urn:dece:type:status:suspended Account has been suspended for some reason

urn:dece:type:status:deidentified Indicates the resource was deidentified to remove PII.

Table 57: Account Status Enumeration

The possible Status values are: active, pending, deleted, forcedeleted, blocked, suspended ,
mergedeleted, and deidentified.

13.1.1 Inactive and Userless Accounts:

Accounts for which no Users are created shall be removed after the age of the Account exceeds
DCOORD_USERLESS_ACCOUNTS_THRESHOLD..

An Account which has acquired Rights Tokens but has had no new Rights Tokens added or removed and
had no streaming activity for a period of DCOORD_INACTIVITY_THRESHOLD is considered to be inactive.
Users (who are not deleted, forcedeleted, mergedeleted, deidentified) associated with this type of
inactive Account shall be notified by email with an explanation of how the Account may be closed. Such
Accounts are not deleted, however.

13.1.2 Account De-Identification Process:

An Account which has been in status deleted, forcedeleted, or mergedeleted for a period of
DCOORD_DEIDENTIFY_ACCOUNT_THRESHOLD or longer shall be modified to have all personally
identifiable information removed from the Account and from all Users in the Account. The following
adjustments are made to the Account:

• //Account/DisplayName shall be changed to DCOORD_DEIDENTIFIED

• //Account/ResourceStatus/Current/value shall be changed to deidentified

In addition to the account resource being de-identified, all the users under the account will be de-
identified per Section 14.1.1.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 170

13.1.3 Periodic removal of test accounts and related data

The Coordinator shall reserve portions of the namespaces for Accounts, Usernames, and User email
addresses as indicators of test Accounts. An Account, Username, or User email address which begins
with DCOORD_TEST_INDICATOR may result in an Account, and all related data, being physically
removed by the Coordinator. The criteria for removal are:

1. Account DisplayName begins with DCOORD_TEST_INDICATOR

2. Username begins with DCOORD_TEST_INDICATOR

3. User email address begins with DCOORD_TEST_INDICATOR

An Account, and all related data, may be removed by the Coordinator if the combination of (1) together
with either of (2) or (3) applies to that Account.

A Coordinator batch process will run regularly to remove these accounts.

Nodes that create test Accounts and Users but wish to ensure the Coordinator does not delete them may
use the DCOORD_TEST_PRESERVE_INDICATOR prefix for the DisplayName of the Account.

13.1.4 AccountCreate()

This API call is retired and AccountUserCreate() (see section 13.1.8) SHALL be used instead.

13.1.5 AccountUpdate()

13.1.5.1 API Description

The AccountUpdate API is used to update an Account entry. The AccountUpdate API can be used to
modify the Account’s DisplayName and Country properties when the Web Portal role is composed with
a full-access user access level. Account data can be also be updated by Nodes on behalf of a properly
authenticated full-access User. The Coordinator SHALL generate an e-mail notice to all full-access Users
indicating that the Account has been updated.

13.1.5.2 API Details

Path:

[BaseURL]/Account/{AccountID}

Method: PUT

Authorized Roles:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 171

urn:dece:role:dece:customersupport
urn:dece:role:coordinator:customersupport
urn:dece:role:lasp[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]

Request Parameters: AccountID is the unique identifier for an Account

Request Body: Account

Element Attribute Definition Value Card.

Account dece:Account-type

Security Token Subject Scope: urn:dece:role:user:class:full

Opt-in Policy Requirements:

urn:dece:type:policy:ManageAccountConsent

Response Body: None

13.1.5.3 Behavior

The AccountUpdate can be used to modify the Account’s DisplayName and Country properties when the
Web Portal role is composed with a full-access user access Level.

13.1.6 AccountDelete()

13.1.6.1 API Description

The AccountDelete API deletes an Account. It changes the status of the Account to
urn:dece:type:status:deleted. This allows Account deletion to be reversed (by changing the
Account status to urn:dece:type:status:active). None of the statuses of any of the Account’s
associated elements (for example, Users or Rights Tokens) SHALL be changed.

Account deletion may be initiated only by a full-access User belonging to that Account. This has the
effect of making the Account delete reversible (that is, it is possible to return the Account’s status to
urn:dece:type:status:active). In order for any resource within an Account to be considered
active (or any other non-deleted status), the Account SHALL be active.

When Account deletion has been completed, any outstanding Security Tokens issued to any and all
Users belonging to the deleted Account are invalidated.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 172

13.1.6.2 API Details

Path:

[BaseURL]/Account/{AccountID}

Method: DELETE

Authorized Roles:

urn:dece:role:coordinator:customersupport
urn:dece:role:dece:customersupport
urn:dece:role:lasp[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]

Request Parameters: AccountID is the unique identifier for an Account

Request Body: None

Response Body: None

Security Token Subject Scope: urn:dece:role:user:class:full

Opt-in Policy Requirements:

urn:dece:type:policy:ManageAccountConsent

13.1.6.3 Behavior

AccountDelete updates the status to deleted. Nothing else is modified. Upon invocation of
AccountDelete(), the Coordinator SHALL invalidate all Security Tokens associated with the Account’s
Users. The Coordinator MAY send Security Token revocation requests, as defined for the applicable
Security Token Profile, to the Nodes associated with these Security Tokens.

The Coordinator SHALL provide e-mail notification to all Full Access Users in the Account indicating that
the Account has been deleted.

Additional email notifications will additionally result as a side effect of the deletion of each User in the
Account (see section 14.1.6).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 173

13.1.7 AccountGet()

13.1.7.1 API Description

This API is used to retrieve Account descriptive information.

13.1.7.2 API Details

As with many Coordinator GET operations, the entire XML object is returned to the requesting API
Client.

Path:

[BaseURL]/Account/[{AccountID}]

Method: GET

Authorized Roles:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:dece
urn:dece:role:lasp[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]

Request Parameters: AccountID is the unique identifier for an Account (optional)

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements:

None

Request Body: None

Response Body: Account

Element Attribute Definition Value Card.

Account dece:Account-type 1

13.1.7.3 Behavior

The GET request has no parameters and returns the Account object.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 174

13.1.8 AccountUserCreate()

13.1.8.1 API Description

This API call is used to create both an Account and its first User. Additionally, it allows the creation of
User-level policies TermsOfUse, UserLinkConsent and ManageUserConsent as part of the composite call.

13.1.8.2 API Details

Path:

[BaseURL]/Account

Method: POST

Authorized role:

urn:dece:role:coordinator:customersupport
urn:dece:role:dece:customersupport
urn:dece:role:lasp:dynamic[:customersupport]
urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]

Request Parameters: None

Request Body:

Element Attribute Definition Value Card.

Account
(including a single User in the
UserList element)
(may include policylist inside
the UserList element)

 dece:Account-type 1

Response Body: None

Security Token Subject Scope: None

Opt-in Policy Requirements: None

Response Body: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 175

13.1.8.3 Behavior

AccountUserCreate creates both the Account, the necessary Rights Lockers and the first User in the
Account. Additionally, the user-level consents TermsOfUse, UserLinkConsent and ManageUserConsent
can be created, if these policies are included as part of the request body. Upon successful creation, an
HTTP Location header in the response provides a reference to the newly created User (this resource URL
contains both the identifier of the User and the Account).

The Account SHALL be set to pending and the User status SHALL be set to blocked:tou until the
termsofuse policy is created, at which point both resources are set to active.

Nodes SHALL supply a value for the //Account/DisplayName and //Account/Country. Nodes MAY utilize
the initial User’s //User/GivenName value or the initial User’s Username value for the DisplayName.The
provided Account SHALL also contain a UserList element with a single User (not by reference). The User
data required is the same as for a regular UserCreate().

Nodes MAY use the UserID attribute of the <User> element to provide the NodeSpecifiedUserID.
NodeSpecifiedUserID is defined as a set of hexadecimal characters of length 32 characters. The value may
be padded on the left with zeroes to account for the the required length. If the supplied value is less than
32 characters, it will rejected by the Coordinator. The UserID SHALL be unique for the Node. If a Node
submits a UserID that collides with an existing UserID (for that Node) then the Coordinator SHALL return
an appropriate error.

The relevant policies SHALL be enforced by the Coordinator.

The Account-level policy ManageAccountConsent is automatically set to TRUE, and applied to the
Account, to facilitate the creation of the first User.If ManageUserConsent policy is requested as part of
the composite operation, then Coordinator automatically sets the Account-level policy
ManageAccountConsent for the Account (for the same Node or Org)

Nodes may request the creation of certain user-level consents as part of the request body. A general
constraint is that TOU must be set prior to any other consent being set. As long as TermsOfUse policy is
included in the request, this contraint is satisfied.

Note: Requests containing only the UserLinkConsent policy and/or ManageUserConsent but not the
TermsOfUse policy are not permitted and Coordinator shall respond with an appropriate error. Other
User-level consents or Account-level consents shall not be included in the request.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 176

As the UserID is not known at the time of the request, Nodes SHALL NOT set the RequestingEntity for
TermsOfUse policy and Resource for UserLinkConsent and ManageUserConsent policies.

Multiple RequestingEntities can be set for ManageUserConsent policy.

The Coordinator SHALL ensure the atomicity of this API call. In other words, the only possible outcomes
of this operation are that either a new Account and its first User (and policies, if requested) have been
created, or no resource was created as a result of the API call.

Note: An Account DisplayName, Username, or User email address which begins with
DCOORD_TEST_INDICATOR may result in an Account, and all related data, being physically removed by
the Coordinator. Refer to section 13.1.3 for more information.

13.2 Merging Accounts

The Coordinator provides two special APIs, AccountMergeTest() and AccountMerge() that together
provide the ability to merge two distinct Accounts into one Account.

The merge process involves two Accounts:

• The Surviving Account (the Account that will be merged into, and will remain active after the
merge has been completed),

• The Retired Account (the Account that resources will be copied from, into the Surviving Account,
and will be deleted after the merge has been completed)

During the merge process, the Account FAUs choose which account is the Surviving Account, and which
is the Retired Account..

13.2.1 Basic Process for Performing a Merge

The following sequence defines the merge process.

1. Authentication and Acknowledgement.

• Full Access User (FAU) 1 in one Account authenticates to the Node, and indicates the
intention to merge with a second Account (which Account is unknown at this stage).

• The Node indicates to FAU 1 that this process is irreversible and the User must
acknowledge that they want to proceed.

• Within the same browser, FAU 2 in the other Account authenticates to the same Node.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 177

• The Node indicates to FAU 2 that the merge process is irreversible and the User must
acknowledge that they want to proceed.

2. Merge Choices.
The following proceeds until the User has selected a merge scenario that is valid or the User
aborts the merge process.

• The Node provides the User the ability to identify the following (the merge scenario)

• Which User(s) will be retained (at least one of FAU1 and FAU2 MUST be
retained).

• The Node allows the User to review the contents of each Account, and warns the User
of any potential issues that may prevent a successful merge (for example, exceeding
ACCOUNT_USER_LIMIT).

• The Node performs the AccountMergeTest API with the two Accounts to confirm the
merge can complete successfully or identify errors.

• If any errors occur, the Node indicates the required corrective action(s) to the FAUs, and
allows the User to return to defining the merge scenario.

3. The Node indicates to the FAUs that the merge can now be performed (and is irreversible) and
receives final confirmation.

4. The Node invokes the AccountMerge API

5. The Coordinator determines whether the Accounts can be merged. This is essentially equivalent
to AccountMergeTest.

6. If the merge is valid, the Coordinator performs the following actions on resources

• All the Rights Tokens are moved from the Retired Account to the Surviving Account.

• DiscreteMediaRights are copied along with corresponding Rights Tokens, including
existing DiscreteMediaRight leases. This allows the lease timing and other factors to be
retained properly. When a lease is moved to the Surviving Account, the previous lease
resource location will no longer be available, nor will the associated Delegation Security
Token be active. However, when an attempt is made to renew, release or consume a
lease, the Coordinator will respond with the
SecTokenMergeReplacementRequired error. This will indicate to the Node that
the DiscreteMediaRight has moved (in addition to the need to obtain a replacement

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 178

Security Token). The corresponding {DiscreteMediaRightID} Resource URL parameter
will remain unchanged after the Account Merge has completed, however, the
{AccountID} parameter will reflect the AccountID of the Surviving Account.

• The retained Users in the Retired Account are moved to the Surviving Account.

• Users in the Surviving Account that are to be removed have their statuses updated to
urn:dece:type:status:mergedeleted.

• Users in the Retired Account that are to be removed have their AccountID changed to
the Surviving Account’s ID. These Users are then deleted (using UserDelete()) and their
statuses updated to urn:dece:type:status:mergedeleted.

• If set in the Retired Account, the urn:dece:type:policy:ManageAccountConsent
policy SHALL be carried over to the Surviving Account in an Active status.

• Active Streams from the Retired Account have their statuses updated to
urn:dece:type:status:deleted.

• The Coordinator performs an AccountDelete on the Retired Account and updates the
Account Status to urn:dece:type:status:mergedeleted.

7. If the merge is valid,

• The Node acquires fresh Delegation Security Tokens for all Users that were moved from
the Retired Account to the Surviving Account. This is necessary because the AccountID
and UserIDs for the moved Users will have changed (note that all consent policies will
be preserved during the merge process).

13.2.2 Common Requirements for Account Merge APIs

Merging involves the combination of resources of two Accounts. This includes Users and Rights. Policies
from the Surviving Account are retained while Policies of each remaining User are retained regardless of
which Account they were from.

The merge process SHALL require that at least one of the two Users represented by the presented
Delegation Security Tokens remains active in the Surviving Account.

The merge process SHALL copy the entire Rights Locker. All Rights Tokens are maintained, regardless of
whether the Account already has Rights for a given Logical Asset (ALID).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 179

The merge process SHALL invalidate all outstanding Delegation Security Tokens for all Users from the
Retired Account.

For Users that are moved from the Retired Account to the Surviving Account, the merge process SHALL
copy all active Policies associated with said Users. This includes both consent Policies as well as
Parental Control Policies.

Users whose status is deleted, forcedeleted or mergedeleted NEED NOT be included in the
//AccountMerge/UserReference element. If included, the Coordinator SHALL ignore those and not
moved them to the Surviving Account.

The outcome of the merge SHALL be a fully valid Account (that is, it meets all of the requirements for
being a valid Account).

The merge process SHALL NOT be performed unless the countries of the Accounts associated with the
merge are identical (e.g. the /Account/Country values match).

Merge SHALL comply with any Geography-specific constraints and requirements as defined in [DGeo].
Geography requirements may prohibit the movement of Users below the DGEO_CHILDUSER_AGE. This
may occur when geo-political systems prohibit such an action. Moving such Users will require manual re-
entry of the child Users into the Surviving Account.

Users under the DGEO_CHILDUSER_AGE who have an associated Connected Legal Guardian (see section
5.5.2.5) SHALL NOT be moved to the Surviving Account unless the Connected Legal Guardian is also
moved to the Surviving Account.

Outstanding streams in the Retired Account SHALL be deleted.

Delegation Security Tokens presented by Customer Support Roles SHALL be evaluated at the User-level
for the Account Merge API methods.

13.2.3 AccountMergeTest()

13.2.3.1 API Description

Provides a mechanism to allow a Node to test the validity of the merge of two Accounts prior to
performing a final merge of those Accounts by proposing a new merged Account. If the new Account
would be valid, the invocation is successful. If the new Account would be invalid, error conditions are
returned to instruct the Node regarding what changes are necessary. For example, the resulting
number of Users meet ecosystem parameter restrictions. Furthermore, if all required preconditions are
not met, an error response will indicate which required preconditions were not met.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 180

If AccountMergeTest() succeeds, and nothing has changed, it should be expected that AccountMerge()
will be successful.

13.2.3.2 API Details

Path:

[BaseURL]/Account/{SurvivingAccountID}/Merge/Test/{RetiredAccountID}

Method: POST

Authorized Roles:

urn:dece:role:dece:customersupport
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp[:customersupport]
urn:dece:role:accessportal[:customersupport]

Node-based Access Control: Yes

Request Parameters:

SurvivingAccountID is the unique identifier for the Account that will be merged into
RetiredAccountID is the unique identifier for an Account that will be merged into the
SurvivingAccountID

Security Token Subject Scope:

urn:dece:role:user:class:full (see section 13.2.6)

Opt-In Policy Requirements:

urn:dece:type:policy:ManageAccountConsent

Request Body: AccountMerge

Response Body: None or ErrorList

Element Attribute Definition Value Card.

AccountMerge dece:AccountMerge-type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 181

13.2.3.3 Request Behavior

The Node SHALL have a Delegation Security Token for both Users involved in the merge process. The
incorporation of two Delegation Security Tokens into this API request differs from a normal API
invocation, as two Users are involved in the process. See section 13.2.6 for details. The Node SHALL
present the two Delegation Security Tokens for authentication within the time period specified by
DCOORD_MERGE_SESSION_AGE.

The request SHALL include an AccountMerge resource that represents the desired Coordinator actions
to perform to complete the merge. This will include:

• An enumeration of each User in both Accounts, as UserReference elements, indicating the
requested ResourceDisposition for each User after the merge (that is, indicating which
Users to keep, and which Users to delete via the StatusValue element).

The following StatusValue values may be used for the Users in the merge request:

• urn:dece:type:status:Active : indicates that the resource should be preserved after the
merge.

• urn:dece:type:status:mergedeleted : indicates that the resource should be force
deleted as part of the merge process.

13.2.3.4 Response Behavior

The Coordinator will evaluate the submission to ensure the results of the request will result in a fully
compliant Account. If the request does not meet the requirements provided in section 13.2 an ErrorList
response will be returned, indicating with the following error codes what actions are required in order
to complete the merge successfully.

The HTTP response status 200 OK will signal a successful test.

In addition to normal API failures, the following errors are particular to the merge process:

• AccountActiveUserCountReachedMaxLimit : the resulting number of Users will exceed the
ACCOUNT_USER_LIMIT. Error will be of form:
“AccountActiveUserCountReachedMaxLimit:” + <userexceeded> where
<userexceeded> is the number of users in excess of ACCOUNT_USER_LIMIT.

• AccountUserAgeRequirementNotMet : a User remains in the Account who cannot be moved as
a result of a restriction on Country of the Accounts. For example, when a Child User moves

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 182

without their associated Connected Legal Guardian. Error will be of form:
“AccountUserAgeRequirementNotMet:” + <userID> where <userID> is the User that
caused the error condition. There can be multiple instances.

• SameAccount : SurvivingAccountID refers to the same Account as RetiredAccountID. A Merge
can only be performed between two distinct Accounts.

An example of an AccountMergeTest submission:

<AccountMerge xmlns="http://www.decellc.org/schema/2015/03/coordinator">

<!-- Proposed Merged User actions -->
<UserList>
 <!-- delete this User as part of the Merge action -->
 <UserReference ResourceDisposition="urn:dece:type:status:mergedeleted">
 urn:dece:userid:user1fromaccountB
 </UserReference>

 <!-- retain this User as part of the Merge action -->
 <UserReference ResourceDisposition="urn:dece:type:status:active">
 urn:dece:userid:user2fromaccountB
 </UserReference>

 <!-- retain this User as part of the Merge action -->
 <UserReference ResourceDisposition="urn:dece:type:status:active">
 urn:dece:userid:user3fromaccountA
 </UserReference>

 <!-- delete this User as part of the Merge action -->
 <UserReference ResourceDisposition="urn:dece:type:status:mergedeleted">
 urn:dece:userid:user2fromaccountA
 </UserReference>
</UserList>

</AccountMerge>

13.2.4 AccountMerge()

13.2.4.1 API Description

Provides a mechanism to allow a Node to perform a final merge of two Accounts. The outcome of this
merge is a single unified Account containing all of the resources of both Accounts based on the
instruction set of the API invocation. The submission process is identical to AccountMergeTest.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 183

13.2.4.2 API Details

Path:

[BaseURL]/Account/{SurvivingAccountID}/Merge/{RetiredAccountID}

Method: POST

Authorized Roles:

urn:dece:role:dece:customersupport
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp[:customersupport]
urn:dece:role:accessportal[:customersupport]

Node-based Access Control: Yes. Nodes SHALL NOT use this API without permission from DECE. Note:
Node-based Access Control can be policy-based or Coordinator-enforced.

Request Parameters:

SurvivingAccountID is the unique identifier for the Account that will be merged into
RetiredAccountID is the unique identifier for an Account that will be merged into the
SurvivingAccountID

Security Token Subject Scope:

urn:dece:role:user:class:full (see section 13.2.6)

Opt-In Policy Requirements:

urn:dece:type:policy:ManageAccountConsent

Request Body: AccountMerge

Response Body: None or ErrorList

13.2.4.3 Request Behavior

A Node SHALL inform the User that Account Merge is irreversible and obtain acknowledgement prior to
invoking AccountMerge().

A Node SHOULD have already performed a successful AccountMergeTest() prior to the use of this API.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 184

The Node SHALL have a Delegation Security Token for both Users involved in the merge process. The
incorporation of two Delegation Security Tokens into this API request differs from a normal API
invocation, as two Users are involved in the process. See section 13.2.6 for details. The Node SHALL
present the two Delegation Security Tokens for authentication within the time period specified by
DCOORD_MERGE_SESSION_AGE.

13.2.4.4 Response Behavior

AccountMerge() performs all tests of AccountMergeTest() prior to making any changes. If there are any
error conditions resulting from these tests, no changes are made to either Account and error conditions
are returned as they would be for AccountMergeTest(). If successful, the Coordinator SHALL create a
dece:AccountMergeRecord resource in the Surviving Account to document the changes done in both
Accounts.

The Account is modified in accordance with requirements in Section 13.2.

If the merge is successfully performed, an HTTP 200 OK status response (with no body) will be returned.

If the merge cannot be successfully performed, an HTTP 403 Forbidden status response with a
complete ErrorList body will be returned. The ErrorList will detail all of the pre-conditions that must be
met to achieve a successful merge.

Any error returned by AccountMergeTest() can also be returned by AccountMerge().

13.2.5 AccountMergeUndo()

API Description

This API allows a Merge to be undone given constraints. This API is only available to Customer Support
sub Roles. AccountMergeUndo() SHALL NOT be allowed once any change has been made to the
Surviving Account. Examples of changes are new or updated Users and new or updated Rights Tokens.

API Details

Path:

[BaseURL]/Account/{SurvivingAccountID}/Merge/Undo

Method: POST

Authorized Roles:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 185

urn:dece:role:dece:customersupport
urn:dece:role:coordinator:customersupport
urn:dece:role:portal:customersupport
urn:dece:role:retailer:customersupport
urn:dece:role:lasp:customersupport
urn:dece:role:accessportal:customersupport

Node-based Access Control: Yes. Nodes SHALL NOT use this API without permission from DECE. Note:
Node-based Access Control can be policy-based or Coordinator-enforced.

Request Parameters:

SurvivingAccountID is the unique identifier for the Account that was merged into.

Security Token Subject Scope:

urn:dece:role:user:class:full (see section 13.2.6)

Note: Security Tokens presented by Customer Support Nodes are usually evaluated at the
Account level. This API is an exception to that.

Opt-In Policy Requirements:

urn:dece:type:policy:ManageAccountConsent

Request Body: None

Response Body: None or ErrorList

Request Behavior

The Node SHALL have a Delegation Security Token for a Full Access User in the Surviving Account.

Response Behavior

MergeUndo occurs on the most recent Merge as indicated by most recent
MergeRecord/DateTimeofMerge element.

The Coordinator SHALL NOT allow a Merge Undo beyond the earlier of either:

• The date calculated by adding DCOORD_MERGE_UNDO_PERIOD to the Merge date.

• If present, the UndoExpiration date attribute of the relevant MergeRecord resource.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 186

The Coordinator SHALL move active Users from the Retired Account to the Restored Account, based
on the MergeRecord/MovedUserReference elements. Deleted UserLinkConsents,
ManageUserConsents and UserDataUsageConsents are not restored.

The MergeUndo process SHALL invalidate all outstanding Delegation Security Tokens for all Users from
the Surviving Account that are returned to the Retired Account.

The Coordinator SHALL return Rights Tokens from the Retired Account back to the Restored Account.
This will be done based on the RightsPurchaseInfo/PurchaseAccount element of the Rights
Token.

The Coordinator SHALL change the state of the Restored Account to active.

The HTTP response status 200 OK will signal a successful Merge Undo.

In addition to normal API failures, the following errors are particular to the merge undo process:

• MergeUndoTimeLimitExceeded: More time has elapsed since the Merge than
DCOORD_MERGE_UNDO_PERIOD (or, if present, when the UndoExpiration date attribute has
passed).

• UndoDoesNotMeetPolicy: Defined policies does not meet Undo policies.

• SurvivingAccountHasBeenModified: changes have been made to the Surviving Account since the
Merge happened.

13.2.6 Special Requirements for Security Tokens for Merge

Because the merge APIs require two Users to be involved in the transaction, both Delegation Security
Tokens SHALL be provided in the HTTP header. This is accomplished by including the same HTTP header
parameter twice, one for each Delegation Token, unless defined otherwise by the Delegation Security
Token Profile.

For example, for the SAML Token Profile defined in [DSecMech], a Node includes two HTTP
Authorization headers to include both Delegation Security Tokens.

Users who were in the Retired Account will have all outstanding Delegation Security Tokens revoked (to
all Nodes). The Security Token Service defined in section 8 of [DSecMech] provides a special allowance
to facilitate the exchange of Delegation Security Tokens for Users of Retired Accounts. This allowance is
also extended to Users moved back to the Retired Account subsequent to an AccountMergeUndo.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 187

All applicable APIs will support the Error Code SecTokenMergeReplacementRequired which is
exclusively used to indicate that the Delegation Security Token Service must be used to exchange an old
Delegation Security Token with a new one due to a merge event.

13.3 Account-type Definition

The Account-type data element is the top-level element for an Account and is identified by an
AccountID. The AccountID is created by the Coordinator, and is of type dece:EntityID-type. Its
content is left to implementation, although it SHALL be unique within a particular Coordinator-Node
context.

Element Attribute Definition Value Card.

Account dece:Account-type
 AccountID Unique identifier for an Account dece:EntityID-type 0..1
DisplayName Display name for the Account

If set as DCOORD_TEST_INDICATOR,
then the Account may be removed by
Coordinator. Refer Section 13.1.3

xs:string

Country Only authorized countries as defined in
[DGeo] Section 2.2 SHALL be valid
values for this element. The
Coordinator validates this value and
SHALL return an error if the Country
value is not authorized or is invalid.

dece:Country

(defined as xs:string)

RightsLockerID Reference to the Account’s Rights
Locker. Currently, only one Rights
Locker is allowed.

xs:anyURI 0..n

UserList A collection of Users associated with
the Account (see Table 78)

dece:UserList-type 0..1

PolicyList A collection of Account Consent policies
(see section 5.4.1

dece:PolicyList-type 0..1

MergeRecord Information about Merges into this
Account. This is only returned to Nodes
with the Role
urn:dece:role:dece:customersupport,
urn:dece:role:coordinator:customersup
port

dece:AccountMergeRecord
-type

0..n

ResourceStatus Status of the Account resource (see
section 17.2)

dece:ElementStatus-type 0..1

Table 58: Account-type Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 188

13.3.1 AccountMerge-type definition

AccountMergeUser-type is used to express the changes initiated in an Account Merge.

Element Attribute Definition Value Card.

AccountMerge-type
UserReference The unique identifier of the User.

May be from either Account.

extends dece:EntityID-
type

1..n

 ResourceDisp
osition

 dece:StatusValue-type

Table 59: AccountMerge-type Definition

13.3.2 AccountMergeRecord-type definition

AccountMergeRecord-type captures Merge information needed to perform and Undo.

Element Attribute Definition Value Card.

AccountMergeRecord-
type

 AccountMergeRe
cordID

Unique identifier for the
AccountMergeRecord

dece:EntityID-type

 UndoPoliciesMet Is this Merge eligible for Undo? The
Coordinator determines if policies
will allow the Undo or if other
conditions would preclude Undo,
and returns the appropriate value.

xs:boolean

 UndoExpiration The date and time when Undo will
not be allowed anymore. Note that
other factors beyond time may
preclude Undo.

xs:dateTime 0..1

DateTimeofMerge The date and time when merge was
completed

xs:dateTime

MergeNodeID The Node that initiated the Merge dece:EntityID-type
RetiredAccount AccountID of the Retired Account dece:EntityID-type
MergeActorSurviving The User from the Surviving Account

who performed the Merge (FAU 1).

dece:EntityID-type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 189

Element Attribute Definition Value Card.
MergeActorRetired The User from the Retired Account

who performed the Merge (FAU 2).

dece:EntityID-type

MovedUserReference References to Users moved during
the Merge.

dece:EntityID-type 0..n

UndoDateTime The date and time when Undo was
performed. If this element is
present, then an Undo has occurred
and the record is maintained for
historical purposes.

xs:dateTime 0..1

Table 60: AccountMergeRecord-type Definition

13.4 Account Status Transitions

The possible Status values are: active, pending, deleted, forcedeleted, blocked, suspended ,
mergedeleted, and deidentified

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 190

14 Users

The User object is a representation of a human end-user of the Coordinator. It allows the users certain
privileges when accessing system data and resources in the DECE ecosystem. Users belong to an
Account.

14.1 Common User Requirements

Users which are in a deleted, mergedeleted, forcedeleted or deidentified status shall not be
considered when calculating the total number of users slots used within an Account for the purposes of
determining the Account’s User quota.

The maximum allowed active User count is determined by the defined Ecosystem parameter
ACCOUNT_USER_LIMIT (specified in [DSystem] section 16). At no time shall the Coordinator retain more
than this number of Users in an Account.

If the sole Full Access User in an Account is being deleted or their User Level is being changed, and there
are additional Users in the Account, the Coordinator SHALL return an error status code of
urn:dece:errorid:org:dece:LastFullAccessUserofAccountCannotBeDeleted. In response,
the requesting Node SHOULD recommend to the User that a new Full-Access User be created or a Basic-
or Standard-Access User be promoted to Full Access to allow deletion of the other Full-Access User.

Legal Guardians

Geography Policies (see Appendix F) SHALL define Legal Guardian requirements, if any, for Users below
the DGEO_AGEOFMAJORITY and/or the DGEO_CHILDUSER_AGE. In order to support the transfer of
Guardianship of such a User, the LegalGuardian element has a cardinality of 0..n. The
LegalGuardian element defines an attribute status, which provides an indication of the current and
intended transferee Legal Guardian. At no time shall there be more than one active LegalGuardian for
a User under the DGEO_AGEOFMAJORITY, if such is required.

Child Users

[DGEO] policies may or may not allow the creation of Child Users

14.1.1 User De-Identification Process:

A user account which has been in status deleted, forcedeleted, or mergedeleted for a period of
DCOORD_DEIDENTIFY_USER_THRESHOLD or longer shall be modified to have all personally identifiable
information removed from the user account. The following adjustments are made to the User resource:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 191

• //User/GivenName shall be changed to DCOORD_DEIDENTIFIED

• //User/SurName shall be changed to DCOORD_DEIDENTIFIED

• Username shall be changed to a unique anonymized value with prefix DCOORD_DEIDENTIFIED

• Password, if present, shall be changed to DE-IDENTIFIED

• DisplayImage, if present, shall be physically removed

• ContactInfo, if present, shall be changed to DCOORD_DEIDENTIFIED except for
/Address/Country

• DateOfBirth, if present, shall be unchanged

• //User/ResourceStatus/Current/value shall be changed to deidentified

• Email address in UserVerificationTokens shall be changed to DCOORD_DEIDENTIFIED

14.1.2 User Functions

Users are only created at the Coordinator, unless the Account-level policy EnableManageUserConsent is
set to TRUE, which allows Node management of a User resource.

14.1.3 UserCreate()

14.1.3.1 API Description

Users may be created using the Web Portal or by a Node (for example, a LASP, Access Portal, or Retailer)
if the Account-level policy EnableManageUserConsent is set to TRUE.

Node SHALL inform the user that a User will be created, why it is being created, and that an email
notification will follow.

14.1.3.2 API Details

Path:

[BaseURL]/Account/{AccountID}/User

Method: POST

Authorized Roles:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 192

urn:dece:role:accessportal[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:dece:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]
urn:dece:role:lasp:linked[:customersupport]

Request Parameters: AccountID is the unique identifier for an Account

Security Token Subject Scope:

urn:dece:role:user:class:standard
urn:dece:role:user:class:full

(with the exception of the first user associated with an Account,
when the security context SHALL be NULL)

Opt-in Policy Requirements:

urn:dece:type:policy:EnableManageUserConsent on the Account resource, with the exception
of the first User which does not require this consent

Request Body:

Element Attribute Definition Value Card.

User Information about the user
to be created.

dece:UserData-type

Response Body:

If no error conditions occur, the Coordinator responds with an HTTP 201 status code (Created) and a
Location header containing the URL of the created resource.

14.1.3.3 Behavior

The first User created in an Account SHALL be of UserClass urn:dece:role:user:class:full. The
required security context for the first user created in association with an Account SHALL be NULL.
EnableManageUserConsent is not required for the creation of the first User in an Account.

A User’s primary E-mail address MAY be attested as confirmed by the Node submitting the transaction.

A similar confirmation MAY be performed every time a User’s PrimaryEmail address is updated.
Note that whether a User’s primary E-mail address is validated or not has no impact on the User’s
status.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 193

A creating user may promote a created user only to the same user privilege level equal to or less than
that of the creating user. By default, the Role for new Users shall be the same Role as the creating User.
A different Role can be provided when invoking this method.

When an Account has reached the DCOORD_MAX_USERS limit, the Coordinator SHALL return an error.
The number of Users in an Account is calculated based on the sum of all active, pending, blocked
(tou and clg) and suspended Users.

 Nodes SHALL NOT provide a DateOfBirth when creating a user. The Password element within the
UserCredentials element may be omitted. If it is omitted, the Coordinator SHALL generate a random
password with sufficient entropy to ensure randomness, incorporate that value as part of the newly
created resource, and internally track that the User’s password value was determined by the
Coordinator by setting the IsRandom attribute on the Password element to TRUE.

This randomly generated password SHALL meet the syntax requirements detailed in [DSecMech] section
6, with the following constraints:

• The randomly generated password SHALL be no less than 12 characters in length.

• The randomly generated password SHALL only consist of the numeric values 0-9 (UTF8 0x30 –
0x39) and alphabetic characters a-z and A-Z (UTF8 0x41 – 0x5A and 0x61 – 0x7A),

The Node creating a new User may have already verified a User’s email address. A Node may indicate
this fact to the Coordinator by populating the relevant attributes provided by the VerificationAttr-
group attribute group, indicating the ConfirmationEndpoint used for verification and the date and
time of the verification. The Node SHALL only indicate a verified email address if the Node has verified
the email address in a manner equivalent to the Coordinator’s email validation process below. See
section 14.2.5.

A Node accepting an email address from a User for the purpose of this API SHOULD require the User to
enter that email address twice and verify that they match to minimize user error.

As part of UserCreate(), a Node MAY attest to the Coordinator that email verification was performed by
a third partyby setting the verificationEntity element to a URL representing the third party. For
example, if a Retailer uses a third party email verification, that Retailer would include a URL that
references that third party.

The resulting resource, when created, will include the {userid}, and considered a DECE assigned
identifier, whose syntax will be:

<USERID> ::= "urn:dece:userid:" <useriduniquepart>

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 194

where <useriduniquepart> is defined as one or more characters that are in the set 'unreserved' as
defined in [RFC3986], Section 2.3.

If the user’s givenname and/or username if set as DCOORD_TEST_INDICATOR, then the user account
may be removed by Coordinator.

Nodes that create test Users but wish to ensure the Coordinator does not delete them may use the
DCOORD_TEST_PRESERVE_INDICATOR prefix for the GivenName, Username of EmailAddress of the
User. If the User is located within an Account whose DisplayName does not include the
DCOORD_TEST_PRESERVE_INDICATOR, all Users within that Account are subject to deletion by the
Coordinator.

14.1.4 UserGet(), UserList()

14.1.4.1 API Description

User information may be retrieved either for an individual user or all users in an Account.

14.1.4.2 API Details

Path:

For UserGet, resulting in a single User:

[BaseURL]/Account/{AccountID}/User/{UserID}

For UserGet, in support of remote Node account creation (with the DataSharingConsent policy):

[BaseURL]/Account/{AccountID}/User/{UserID}/DataSharing

For UserList, resulting in a list of all users in an Account:

[BaseURL]/Account/{AccountID}/User/List[?response={responseType}]

Method: GET

Authorized Roles:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:dece[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp:*[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 195

Request Parameters:

For UserGet:

AccountID – the unique identifier for an Account
UserID – the unique identifier for a User

For UserList:

AccountID – the unique identifier for an Account
response – optional. By default, that is if no request parameter is provided, the operation returns
a list of Users by reference. When present, the response parameter can be set to one of the 2
following values:

• node – return the Users. Only the urn:dece:role:dece:customersupport Role can
use this value.

• reference – return references to the Users (UserReference) – this is the default value.

For example: [BaseURL]/Account/{AccountID}/User/List?response=reference will
instruct the Coordinator to only return a list of references to Users.

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements:

For UserGet:

NoneFor UserList:

urn:dece:type:policy:ManageAccountConsent

Request Body: None

Response Body:

For a single User, response shall be the identified User resource.

For UserList(), the response shall be the UserList collection (UserReference form).

Element Attribute Definition Value Card.

User See Table 62 dece:User-type
UserList See Table 78 dece:UserList-type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 196

14.1.4.3 Behavior

If no error conditions result, the Coordinator returns the User or UserList resource. Only Users whose
status is not deleted (that is, not urn:dece:type:status:archived,
urn:dece:type:status:other, urn:dece:type:status:deleted or
urn:dece:type:status:forcedeleted) shall be returned to all invoking Roles, with the exception
of the customer support Roles, who have access to all Users in an Account regardless of status.

The Policies applied to the User resource (stored in the PolicyList element) SHALL NOT be returned.
Nodes may obtain the Parental Controls for the User using the PolicyGet() API.

The Password element will be returned only if the IsRandom attribute is true. When returned, the
element will not be populated with the passwords value, and the IsRandom attribute will be included
with the response set to ‘true’.

The DateOfBirth element will not be returned in the response.

14.1.4.3.1 UserGet for Data Sharing

The requirements in this section only apply when UserGet is invoked with the DataSharing form of the
endpoint; that is, the form used for remote user account creation.

When UserGet is invoked, urn:dece:type:policy:DataSharingConsent must be present and
have been created less than DCOORD_DATA_SHARING_CONSENT_DURATION from the time of the
UserGet request; otherwise, the Coordinator SHALL reject the request.

The response SHALL only contain the following elements (from the User Resource):

- //User/Name

- //User/DisplayImage

- //User/ContactInfo

- //User/Languages

The Coordinator SHALL include the Cache-control: no-cache, no-store directives in its
response. This will prohibit HTTP caching.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 197

No reference to Coordinator-hosted URLs SHALL be used. If the Node wants to use an image, it would
de-reference any URL link included in the response (e.g. //DisplayImage/DisplayImageURL) and copy the
data locally.

14.1.5 UserUpdate()

14.1.5.1 API Description

This API provides the ability for a Node to modify some User properties.

14.1.5.2 API Details

Path:

[BaseURL]/Account/{AccountID}/User/{UserID}

Method: PUT

Authorized Roles:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport

Request Parameters:

AccountID is the unique identifier for an Account

UserID is the unique identifier for a User

Security Token Subject Scope:

urn:dece:role:user:class:basic (when managing their own User resource)
urn:dece:role:user:class:standard
urn:dece:role:user:class:full

Opt-in Policy Requirements:

For invoking Roles (except DECE, Web Portal, Coordinator, and all customer support Roles), the
urn:dece:type:policy:EnableManageUserConsent policy must be TRUE for the Account

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 198

resource and urn:dece:type:policy:ManageUserConsent policy must be TRUE for the User
resource.

Request Body:

Element Attribute Definition Value Card.

User dece:UserData-type

Response Body: None

14.1.5.3 Behavior

Only Users whose status is urn:dece:type:status:active MAY be updated by non-customer
support Roles. Most Roles may only update a subset of a User resource. The following table shows
which Roles may change which data elements.

Role Data Element
urn:dece:role:accessportal[:customersupport]
urn:dece:role:retailer
urn:dece:role:retailer:customersupport
urn:dece:role:lasp:linked
urn:dece:role:lasp:linked:customersupport
urn:dece:role:lasp:dynamic
urn:dece:role:lasp:dynamic:customersupport

ContactInfo
DisplayImage
Languages
Name
UserClass

urn:dece:role:coordinator:customersupport
urn:dece:role:dece
urn:dece:role:dece:customersupport
urn:dece:role:portal
urn:dece:role:portal:customersupport

Entire User Resource

Table 61: User Data Authorization

A Node accepting an email address from a User for the purpose of this API SHOULD require the User to
enter that email address twice and verify that they match to minimize user error.

The Coordinator SHALL provide e-mail notification to the effected User’s primary email-address after a
successful update has occurred.

14.1.5.4 Password Resets

Customer support Roles SHALL NOT update a user’s Credentials/Password directly. Instead, they should
invoke a password recovery process with the User at the Web Portal, as defined in section 14.2.7.
Customer support Roles MAY update a User’s primary e-mail address in order to facilitate e-mail-based
password recovery defined in section 14.2.7. The Web Portal, Coordinator, and DECE customer support

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 199

Roles MAY update a User password directly. If a User changes a password, the Coordinator will clear any
flag that may indicate that the Coordinator generated the password value, as provided for in section
14.1.2.

14.1.5.5 UserRecoveryTokens (Security Questions)

Note: This feature is no longer supported. It is retained here for historical purposes and potential
re-introduction in the future.

UserRecoveryToken SHOULD NOT be used. This function is supported for backwards compatibility and
may be reinstituted in the future, but its use should be considered deprecated

A UserRecoveryTokens resource maintains questions and their User-supplied answers, which can be
used to recover forgotten User Credentials. Processing rules for UserRecoveryTokens are defined in
section 14.2.7. These tokens SHALL NOT be used by the Web Portal in order to initiate a question-based
password recovery procedure.

UserRecoveryTokens tokens MAY be used to authenticate a User through other communications
channels, including voice. Customer support Roles that include voice-based support services SHOULD
authenticate a User with these questions if present, in addition to any other knowledge authentication
methods the Node may possess.

Customer Support Roles MAY employ UserRecoveryTokens to authenticate a customer who has
supplied a username. In this case the Customer Support Role SHALL select one question from the set of
user-answered questions and present it to the User through available channels (Web interface, online
chat, e-mail, phone conversation, etc.).

The Customer Support Role SHALL then compare the answer to the original User-supplied answer, either
programmatically (after removing punctuation and whitespace from both strings) or by human
comparison, to determine if the customer is authorized to access the identified User and Account
records.

Customer Support Roles SHALL NOT ask for password through any channel.

14.1.6 UserDelete()

14.1.6.1 API Description

This removes a User from an Account. The User’s status is changed to deleted, rather than removed to
provide an audit trail, and to allow restoration of a User that was inadvertently deleted.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 200

14.1.6.2 API Details

Path:

[BaseURL]/Account/{AccountID}/User/{UserID}

Method: DELETE

Authorized Roles:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp:*[:customersupport]
urn:dece:role:coordinator:customersupport

Request Parameters:

AccountID is the unique identifier for an Account

UserID is the unique identifier for a User

Security Token Subject Scope: urn:dece:role:user:full

Opt-in Policy Requirements:

For the Access Portal, LASP, and Retailer Roles, successful invocation requires that the Account-level
policy urn:dece:type:policy:EnableManageUserConsent is TRUE on the Account resource and
that the User-level policy urn:dece:type:policy:ManageUserConsent is TRUE on the User
resource.

Request Body: None

Response Body: None

14.1.6.3 Requester Behavior

The Coordinator SHALL NOT allow the deletion of the last User associated with an Account. If User wants
to close an Account entirely, then AccountDelete() SHALL be used.

The Coordinator SHALL NOT allow the deletion of the last full-access User associated with an Account. If
the User being deleted is the only Full Access User, and there are additional Users in the Account, a new
Full Access User SHALL be created, before the Coordinator will allow the deletion to occur. If the
requestor wishes to remove the last remaining User in an Account, then the AccountDelete API SHALL
be used instead.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 201

Deletion of the invoking User identified in the presented Delegation Security Token SHALL be allowed.

The Coordinator SHALL invalidate any outstanding Delegation Security Tokens associated with a deleted
User. The Coordinator MAY initiate the appropriate specified Delegation Security Token logout profile to
any Node which possesses a Delegation Security Token.

User resources whose status is changed to deleted SHALL be retained by the Coordinator for at least
as many days from the date of deletion as determined by the defined Ecosystem parameter
DCOORD_DELETION_RETENTION. Deleted Users SHALL NOT be considered when calculating the number
of Users in the Account.

The Coordinator SHALL provide e-mail notification to the effected User’s primary email-address after a
successful deletion has occurred.

14.1.7 UserValidationTokenCreate()

14.1.7.1 API Description

This API will be used by Nodes to request the DECE Coordinator to issue a new verification token of the
token type specified in the request.

To minimize the impact of automated attacks to this API, including each TokenType variant, all Nodes,
including the Web Portal, SHALL employ a reverse Turing test after the maximum allowable retries has
been exceeded. This limit is defined as DCOORD_VALIDATION_TOKEN_RETRY_LIMIT attempts by a User
within the DCOORD_VALIDATION_TOKEN_RETRY_TIMEOUT that would result in the invocation of this
API. [DSECMECH] section 3.4.3 defines requirements for implementations of a reverse Turing test.

For example, a Node may provide password recovery capabilities within their web application,
accessible to anonymous users. The user may attempt providing an e-mail address to the tool 3 times in
a span of 15 minutes before being additionally challenged with a CAPTCHA.

Note: The terms validation and verification are used interchangeably in this section.

14.1.7.2 API Details

Path:

When a Security Token is available to the node:

[BaseURL]/Account/{AccountID}/User/{UserID}...
.../VerificationToken/{TokenType}

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 202

When a Security Token is not available to the node, or to request a Security Token to be
established:

[BaseURL]/VerificationToken/{TokenType}?subject={UserIdentifier}[&responseType={Securi
tyTokenResponseType}]

Method: POST

Authorized Roles:

urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]
urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:accessportal[:customersupport]

Node-based Access Control: The Validated email form of this API employs Node-based acess control
measures. Nodes SHALL NOT use that form of the API without permission from DECE. Note: Node-based
Access Control can be policy-based or Coordinator-enforced. Other forms of this API do not include
Node-based access control.

Request Parameters:

AccountID is the unique identifier for an Account
UserID is the unique identifier for a User
TokenType is the type of confirmation token request. Valid values defined below.
Useridentifier is the PrimaryEmailAddress. If TokenType is
urn:dece:type:token:ResetPassword or
urn:dece:type:token:DelegationTokenRequest:VerifiedEmail, this identifier may
instead contain one of the AlternateEmailAddress. This identifier is used as the primary
search criteria
SecurityTokenResponseType is the profile identifier of a suitable delegation token profile
as defined in [DSecMech].

Security Token Subject Scope: urn:dece:role:user if present. See Behavior below for details.

Opt-in Policy Requirements:

None

Request Body: None or a Delegation Security Token Request (for the
urn:dece:type:token:DelegationTokenRequest and
urn:dece:type:token:DelegationTokenRequest:VerifiedEmail tokentypes)

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 203

Response Body: None

14.1.7.3 Behavior

The requestor provides a TokenType value of:

• urn:dece:type:token:ValidateEmail – instructs the Coordinator to send a new email
address confirmation message to the specified User.

• urn:dece:type:token:ResetPassword- instructs the Coordinator to send a forgotten
credential message to the specified User.

• urn:dece:type:token:UnlockMe - instructs the Coordinator to send an Account unlock
message to the specified User. A locked account typically occurs after sequential authentication
attempt failures.

• urn:dece:type:token:DelegationTokenRequest- instructs the Coordinator to initiate an
email-based account linking exchange. See section 14.1.7.4 for details.

• urn:dece:type:token:DelegationTokenRequest:VerifiedEmail- instructs the
Coordinator to immediately create a Delegation Security Token. See section 14.1.7.4.1 for details.

A Node SHALL include a Delegation Security Token for the associated User if that Node bears such a
Delegation Security Token.

This API shall generate a new verification token of the requested token type for a given User. This
operation shall invalidate any previously outstanding verification token of the requested token type
associated with the User.

The Coordinator SHALL NOT allow Users below the DGEO_CHILDUSER_AGE to use the
urn:dece:type:token:ResetPassword token type with the API variant not requiring a Delegation
Security Token. That is, Child Users cannot do email-based Credential Recovery. Such Users will need to
have their passwords reset at the Portal or an authorized Node by the applicable Connected Legal
Guardian or the Child User themselves (either at the Portal or the API with the Connected Legal
Guardian's Delegation Security Token or the Childs Delegation Security Token). An authorized Node is
one for which the policy urn:dece:type:policy:ManageUserConsent has been established for the
subject User.

If the supplied subject query parameter does not match one or more Users, the Coordinator shall
respond with an HTTP 404 Not Found response code.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 204

If the supplied subject query matches exactly one User and that User is in the
urn:dece:type:status:blocked status, the Coordinator will update the User status to the previous
status of the User, prior to generating an email communication.

If the supplied subject query matches (in the API variant without the Delegation Security Token) exactly
one User and that User is below the DGEO_CHILDUSER_AGE, the Coordinator will not service the
request to non-customer support roles, and will respond with an HTTP 403 Forbidden response code.

In the case of the urn:dece:type:token:ResetPassword parameter, the Coordinator will require
that the User establish a password when the verification token is redeemed at the Coordinator. The
update of a User’s password shall follow the requirements of [DSecMech] section 6, and 14.1.4, but may
match a previously established password.

Successful creation of a new verification token shall result in a new verification email message to be sent
to the User, and the Coordinator shall response with an HTTP 200 OK response code. This email will
include, at a minimum:

• The one-time-use verification token (to allow for cases when the URL above cannot be used, for
example, within certain devices).

• The URL where the verification token can be submitted to complete the verification process.

The Coordinator will generate the verification token of a length and validity period such that verification
token collisions are impossible. The length and validity period of verification tokens may be a function of
actual or anticipated load, however they will not exceed DCOORD_VALIDATION_TOKEN_MAX_LENGTH
(but will usually be DCOORD_VALIDATION_TOKEN_TYPICAL_LENGTH bytes). It will consist of the
following Unicode code points:

• U+002D (HYPHEN-MINUS)

• U+0030 through U+0039 (0-9)

• U+0042 through U+005A (A-Z), matching is case insensitive

If the supplied subject query parameter matches more than one User at or above the
DGEO_CHILDUSER_AGE, the Coordinator will be required to associate the supplied verification token
with a set of Users that matched the API request, and SHALL present to the person undergoing a
verification token confirmation:

• the Account DisplayName

• the User’s GivenName and SurName

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 205

for each User that shares the same primary email address. Users below the DGEO_CHILDUSER_AGE shall
not be included in this disambiguation step. For example: “John Smith (the Smith’s household)”.

Once the User has been uniquely identified, the Coordinator will redirect the User to a page for the User
to perform the necessary action(s) associated with the TokenType provided in the original invocation.

Once the User has completed the action(s) associated with the TokenType, the Coordinator will
redirect the User to their profile page at the Web Portal.

To mitigate the exposure of abuse by unauthenticated users at Node’s and the Portal, use of this API’s
Security Token-less form is limited to DCOORD_VALIDATION_TOKEN_RETRY_LIMIT, which is calculated
based on the supplied UserIdentifier API parameters irrespective of the Node associated with this
API invocation.

If the DCOORD_VALIDATION_TOKEN_RETRY_LIMIT has been reached for the supplied
UserIdentifier, the Coordinator will respond with an HTTP 403 Forbidden status code, and an
errorID of urn:dece:errorid:org:dece: ValidationTokenRetryLimitReached. The
Coordinator will reset the counter for each UserIdentifier, after
DCOORD_VALIDATION_TOKEN_RETRY_TIMEOUT.

To minimize the impact of automated attacks to this API, when receiving this error, the Web Portal and
Nodes SHALL employ a reverse Turing test in accordance with [DSECMECH] section 3.4.

14.1.7.4 Email-based Delegation Security Token Establishment

A Node may initiate an email-based process to establish a UserLinkConsent policy as defined in Section 5
and obtain a Delegation Security Token as defined in [DSecMech] by use of this API. It does so by
indicating a {tokentype} parameter value of urn:dece:type:token:DelegationTokenRequest
and supplying in the body of the HTTP request a fully formed Delegation Security Token request as
defined in [DSecMech]. The specificities of the supplied HTTP request body are defined by the
Delegation Security Token profiles implemented at the requesting Node (see section 5 of [DSecMech]).
Responses by the Coordinator will use the same Security Token profile that the request was made with.
For example, a SAML AuthNRequest submission to this API will result in a SAML Response to the Node.

Errors in the body of the API submission will result in security profile-specific error messages. Other
errors will be handled in the same manner as other API invocations (that is, an ErrorList in the body
of the response).

A validation token generated by the Coordinator for this token type SHALL be valid for no more than
DCOORD_VALIDATION_DELEGATIONTOKEN_MAXLIFE, is valid for exactly one use and is unique

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 206

compared to other validation tokens within the DCOORD_VALIDATION_DELEGATIONTOKEN_MAXLIFE
time span. Once a token of this type has expired, it shall be considered invalid if presented to the
Coordinator, and a new token will be required, provided the
DCOORD_VALIDATION_TOKEN_RETRY_LIMIT has not been reached.

The validation token generated by the Coordinator acts as an internal reference for correlating a User
response to the corresponding request from a Node.

The requesting Node SHALL include a UserLinkConsentPolicy in the request.

If the UserLinkConsent Policy does not already exist for the Node and User, the Coordinator SHALL
create a UserLinkCreate Policy for the invoking Node’s Organization and the identified User.

If the UserLInkConsent Policy already exists for the Node and User, the Coordinator MAY overwrite the
existing UserLinkConsentPolicy for that Node and User with the new UserLinkConsent Policy

Nodes MAY include other Policies as allowed by [DSecMech] section 5.

If the UserLinkConsentPolicy is not present in the request, then the Coordinator SHALL reject the
request and return the HTTP status code 403 Forbidden.

When a valid validation token is submitted to the Coordinator, the Coordinator SHALL create a
UserLinkConsent policy for the invoking Node’s Organization and the identified User.

The Node signals to the Coordinator which Delegation Security Profile it wants for the response by using
that Profile’s identification URN in the SecurityTokenResponseType request parameter. The
Coordinator responds in accordance with the protocol defined in [DSecMech] for the requested
Delegation Security Profile type.

14.1.7.4.1 Validated Email Requests

A Node SHALL NOT include an email address of the User in the SAML //Subject/NameID element if the
Node has not previously verified the email address.This will result in a new SAML Assertion to be
created immediately, without the need for the Coordinator to interact with the User prior to the
issuance of a Delegation Security Token.

To use this form of the API, Nodes SHALL have an established authentication session with the User and
SHALL have positively verified the email address associated with the User.

The Coordinator shall be capable of unambiguously identifying exactly one User based solely on Primary
and secondary email addresses already provisioned. Ambigous matches will result in an error response.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 207

The requesting Node SHOULD include a UserLinkConsentPolicy in the request. If UserLinkConsent policy
is requested, Coordinator SHALL create a UserLinkConsent policy for the invoking Node’s Organization
and the identified User. The presence of the UserLinkConsent policy affects the duration of Delegation
Security Tokens (see [DSecMech] 4.3.2.1).

Successful requests will result in an HTTP 201 Created response, with the Location header
indicating the URL of the created SAML Assertion.

14.1.7.4.2 Email message-based Requests

If the request does not include a User email address in the request, the Coordinator sends an email
message (the “account link request email”) to the primary email address of the User identified by the
{UserIdentifier} parameter of the API invocation. The email includes at a minimum a fully qualified URL
that incorporates the validation token suitable for an [HTML4] compatible user agent, as well as the URL
of the Coordinator validation resource and the validation token in plain text form.

The User may perform an HTTP GET (typically by clicking on an included link in the email message or by
typing the validation resource into an HTML user agent) on one of the provided URLs.

Should a Node require a stateful mechanism for such an email-based exchange, it MAY request that
session state be transferred to the email verification process, provided the requested Delegation
Security Token Profile supports this capability. If provided in the original request and if supported by the
Delegation Security Token profile, the Coordinator will include such session state information in its
response to the Node.

For example, the SAML Delegation Security Token profile allows for the RelayState parameter to be
included in a SAML response via the urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect and
urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST bindings, defined in [SAML2BIND] and discussed in
[DSecMech].

A prototypical sequence of events is depicted in Figure 14 below.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 208

Figure 14 Example Email-based Delegation Token Establishment Flow

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 209

14.2 User Types

14.2.1 UserData-type Definition

The User Resource’s construction will be heavily influenced by specific geo-political requirements.
These requirements will be generally addressed in [DGeo] section 2, and may also be amended by
specific Geography Policies outlined in the applicable [DGeo] Appendices. The criteria specified there
include age restrictions for Roles, grace periods for the acceptance of Terms of Use (see section 5.5.2.3)
and certain restrictions on the modification of properties of a User Resource.

Element Attribute Definition Value Card.

User
 UserID The Coordinator-specified or Node-

specified User identifier, which SHALL
be unique among the Node and the
Coordinator.

dece:EntityID-type 0..1

 UserClass The class of the User. Defaults to the
class of the creating User

dece:UserClass-type

(defined as an xs:string)

Name GivenName and Surname
If GivenName is set as
DCOORD_TEST_INDICATOR, then the
user account may be removed by
Coordinator.Refer Section 13.1.3

dece:PersonName-type

DisplayImage A chosen display image (or avatar) for
the user.

dece:DisplayImage-type 0..1

ContactInfo Contact information which includes
the definion of the Users Country,
which may be required depending on
requirements defined in [DGeo].

See UserContactInfo-
type

Languages Languages used by User dece:Languages-type 0..1
DateOfBirth The DateOfBirth date value of the User

SHALL NOT be supplied by the Nodes.

dece:DateOfBirth-type 0..1

LegalGuardian A reference to the identified Legal
Guardian for the User. Usage SHALL
be in accordance with [DGeo].

dece:LegalGuardian-type 0..n

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 210

Element Attribute Definition Value Card.
Credentials The Security Tokens used by the User

to authenticate to the Coordinator
If UserName is set as
DCOORD_TEST_INDICATOR, then the
user account may be removed by
Coordinator.Refer Section 13.1.3

dece: UserCredentials-
type

UserRecoveryTokens A pair of security questions used for
password recovery interactions
between the Coordinator and the
User. Two questions, identified by URIs
are selected from a fixed list the
Coordinator provides, and the User’s
xs:string answers. Matching is case
insensitive; and punctuation and white
space are ignored.

dece: PasswordRecovery-
type

0…1

PolicyList Collection of policies applied to the
User

dece:PolicyList-type 0..1

ResourceStatus Indicates the status of the User
resource. See section 17.2.

dece: ElementStatus-
type

0..1

Table 62: UserData-type Definition

The DateOfBirth-type allows for the expression of either:

• A full date expression (i.e., YYYY-MM-DD) or a date expressed with a granularity of month (i.e.,
YYYY-MM)

• A NULL value, with the boolean attribute MeetsAgeOfMajority indicating if the User meets
the applicable geographies criteria (as defined by [DGeo]). For example, <DateOfBirth
MeetsAgeOfMajority=”true”/>

Element Attribute Definition Value Card.

DateOfBirth Extends
dece:DayOptionalDate-type

 MeetsAgeOfMajority As allowed by [DGeo], this
flag may be used to indicate
the User meets the
DGEO_AGE_OF_MAJORITY
requirement.

xs:boolean 0..1

Table 63: DateOfBirth-type definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 211

The simple type DayOptionalDate-type extends the date datatype to allow the omition of the day value
in a date expression

Element Attribute Definition Value Card.

DayOptionalDate-type union:
xs:date or
xs:gYearMonth

Table 64: DayOptionalDate-type Definition

The DisplayImage-type allows for either the submission of the raw image data, or a reference URL to the
image.

Element Attribute Definition Value Card.

DisplayImageURL A fully qualified URL to the
User’s display image.

dece:AbstractImageRes
ource-type

(choice)

DisplayImageData A base 64 encoded image to
incorporate into the User
resource. The Coordinator
shall store and assign the
supplied image a URL for
incorporation into other User
resource requests as
DisplayImageURL

xs:base64Binary
in accordance with
[RFC2045]

(choice)

Table 65: DisplayImage-type Definition

14.2.2 UserContactInfo Definition

Element Attribute Definition Value Card
.

UserContactInfo dece:UserContactInfo-type
PrimaryE-mail dece:ConfirmedCommunicationEndpoint-type
AlternateE-mail dece:AlternateEmail-type 0..5
Address dece:ConfirmedPostalAddress-type 0..1
TelephoneNumber dece:ConfirmedCommunicationEndpoint-type 0..1
MobileTelephoneNumber dece:ConfirmedCommunicationEndpoint-type 0..1

Table 66: UserContactInfo Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 212

14.2.3 ConfirmedPostalAddress-type Definition

Element Attribute Definition Value Card.

ConfirmedPostalAddress-
type

 dece:
ConfirmedPostalAddress-
type

 Verificati
onAttr-
group

See Table 69 dece: VerificationAttr-
group

PostalAddress An optional street address. xs:string 0…n
PostalCode An optional postal code. xs:string 0…1
Locality An optional Locality (e.g.

City)

xs:string 0...1

StateOrProvince An optional state or
province name.

xs:string 0…1

Country Only authorized countries
as defined in [DGeo]
Section 2.2 SHALL be valid
values for this element.
The Coordinator validates
this value and SHALL
return an error if the
Country value is not
authorized or is invalid.
This value SHALL conform
to values as specified in
[ISO3166-1].

xs:string 1

14.2.4 ConfirmedCommunicationEndpoint Definition

Element Attribute Definition Value Card.

Confirmed Communication
Endpoint

 dece:Confirmed
Communication Endpoint-
type

 Verificati
onAttr-
group

See Table 69 dece: VerificationAttr-
group

Value xs:string
ConfirmationEndpoint xs:anyURI 0..1
VerificationToken xs:string 0..1

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 213

Table 67: ConfirmedCommunicationEndpoint Definition

14.2.5 AlternateEmail Definition

Element Attribute Definition Value Card.

AlternateEmail Extends
dece:ConfirmedCommunicationEnd
point-type

 Notify Flag for alternate email
address to indicate it is to
be used for notification
purposes (Notify=True).

xs:Boolean (default: false)

Table 68: AlternateEmail Definition

14.2.6 VerificationAttr-group Definition

Element Attribute Definition Value Card.

VerificationAttr-group dece:Verification
Attr-group

 ID xs:anyURI 0..1
 verified Indication if the communication

endpoint has been confirmed. A
Node may set this value to true,
if it has completed the
verification of this
communication endpoint for this
User in accordance with 14.1.2.

xs:boolean 0..1

 VerificationStatus Indication of the verification
status, if the verification is to be
performed by the Coordinator.
Nodes SHALL set this value to
urn:dece:type:status:s
uccess if and only if it has
indicated positive verification in
the verified attribute above.
Valid values are described
below.

dece:Verification
Status-type
Restricts
dece:EntityID-
type

0..1

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 214

Element Attribute Definition Value Card.
 VerificationDateTime The DateTime the

communication endpoint was
confirmed by the Coordinator or
Node.

xs:dateTime 0..1

 VerificationEntity The NodeID of the node that
performed the confirmation

xs:anyURI 0..1

Table 69: VerificationAttr-group Definition

14.2.6.1 VerificationStatus-type Definition

When the Coordinator is in the process of performing validation of a communication endpoint (for
example, the PrimaryEmail), the VerificationStatus attribute will indicate the current state of the
process. Possible values (dece:VerificationStatus-type) are:

• urn:dece:type:status:pending – the verification processes in underway, but has not been
completed yet

• urn:dece:type:status:success – the verification processes has been successfully
completed

• urn:dece:type:status:failed – the verification processes failed. This may mean that the
endpoint responded with an undeliverable error response or other delivery-related failure

• urn:dece:type:status:expired – the verification process reached its maximum attempt
threshold. For example, the DCOORD_E-MAIL_CONFIRM_TOKEN_MAXLIFE limit was reached

Nodes may make use of this information to assist Users in completing the verification process.

14.2.7 PasswordRecovery Definition

Element Attribute Definition Value Card.

PasswordRecovery dece:PasswordRecovery-type
RecoveryItem dece:PasswordRecoveryItem-type 1…n

Table 70: PasswordRecovery Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 215

14.2.8 PasswordRecoveryItem Definition

Element Attribute Definition Value Card.

PasswordRecovery Item dece:PasswordRecoveryItem-type
QuestionID xs:positiveInteger
Question xs:string 0..1
QuestionResponse xs:string

Table 71: PasswordRecoveryItem Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 216

14.2.8.1 Visibility of User Attributes

The following table indicates the ability of User Access Levels to read and write the values of a User
resource property. An R indicates that the User may read the value of the property, and a W indicates
that the User may write the value.

User Property Se
lf*

Ba
sic

-A
cc

es
s

St
an

da
rd

-A
cc

es
s

Fu
ll-

Ac
ce

ss

Notes

UserClass R R RW1 RW

UserID R R R R The UserID is typically not displayed, but may appear in
the URL.

Name RW R RW1 RW

DisplayImage RW R RW1 RW

ContactInfo RW R RW1 RW ContactInfo/Address/Country is only writable under
conditions described in [DGeo].

Languages RW R RW1 RW

DateOfBirth RW R R RW Since standard-access Users may not set parental controls,
they should not be able to write to this property.

Policies:Consent RW R R RW
Policies:ParentalControl R R R RW
Credentials/Username RW R RW1 RW

Credentials/Password W N/A W1 W

UserRecoveryTokens RW N/A RW1 RW

ResourceStatus/Current R R R RW The current status of the User can be read (and written to,
in the case of the full-access User).
Prior status is not available to any User.

Table 72: User Attributes Visibility

*The pseudo-role Self applies to any user’s access to properties of his or her own User. The policy
evaluation determines access based on the union of the Self column with the user classification column.

1 The standard-access User has write access to the basic-access and standard-access Users.

In addition to the constraints listed in Table 72, access to User resource properties using a Node other
than the Web Portal requires the ManageUserConsent policy to be TRUE for the User (and
EnableManageUserConsent to be TRUE for the Account). See Section 5 for additional details.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 217

The customer support Roles may, in addition to always having read access to the UserRecoveryTokens,
have write-only access to the Credentials/Password property in order to reset a user’s password,
provided that the ManageUserConsent policy is TRUE for the User (and EnableManageUserConsent is
TRUE for the Account). The portal:customersupport and dece:customersupport Roles shall
always have write access to the Credential/Password and read access to UserRecoveryTokens
properties, regardless of the ManageUserConsent policy setting for the User.

14.2.8.2 ResourceStatus-type

A User’s status may undergo change, from one status to another (for example, from
urn:dece:type:status:active to urn:dece:type:status:deleted). The Status element (in
the ResourceStatus element) may have the following values.

User Status Description
urn:dece:type:status:active User is active (the normal condition for a User)
urn:dece:type:status:archived The User has been removed from the Coordinator. Only the Coordinator

can set a User to this status.
urn:dece:type:status:blocked Indicates that the User experienced multiple login failures, and requires

reactivation either through password recovery or update by a full access
User in the same Account. While this status is no longer in use, Users
created prior to this version of the specification may be in this status.

urn:dece:type:status:blocked:clg Indicates that a User under the DGEO_CHILDUSER_AGE has been
suspended as a result of a status change of the User identified in the
LegalGuardian element of the User.

urn:dece:type:status:blocked:tou User has been blocked because the User has not accepted the current, in
force Terms Of Use (TOU). The User can authenticate to the Web Portal
or other Node, but cannot have any actions performed on their behalf via
Web Portal or other Node until the DECE terms have been accepted via
the Web Portal or other Node and status is returned to active.

urn:dece:type:status:deleted User has been deleted from the Account (but not removed from the
Coordinator). This status can be set by a full-access User or customer
support Role. Only the customer support Roles can view Users in this
state.

urn:dece:type:status:forcedeleted An administrative delete was performed on the User.
urn:dece:type:status:other User is in a non-active, but undefined state
urn:dece:type:status:pending Indicates that the User resource has been created, but has not been

activated.
urn:dece:type:status:mergedeleted Indicates that the resource should be (in context of merge test) or is

(after merge) force deleted as part of a merge process
urn:dece:type:status:suspended User has been suspended for some reason. Only the Coordinator or the

customer support Role can set this status value.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 218

Table 73: User Status Enumeration

StatusHistory values SHALL be available using the API for historical resources for no longer than the
number of days determined by the defined Ecosystem parameter DCOORD_DELETION_RETENTION.

14.2.9 UserCredentials Definition

User credentials are authentication tokens used when the Coordinator is directly authenticating a User,
or when a Node is employing the Login API.

Element Attribute Definition Value Card.

UserCredentials dece:UserCredentials-type
Username User’s user name xs:string
Password Password associated with

user name. This element
SHALL NOT be included in
UserCreate if the intention
is to have the Coorddinator
generate the password.

dece:Password-type 0..1

Table 74: UserCredentials Definition

14.2.10Password-type Definition

Element Attribute Definition Value Card.

dece:Password-type Password. SHALL be empty
if IsRandom is ‘true’

Extends xs:string

 IsRandom Indication if the stored
password was randomly
assigned by the
Coordinator or not.
SHALL NOT be included if
‘false’. Nodes SHALL NOT
include this attribute
during User creation.

xs:boolean 0..1

14.2.11UserContactInfo Definition

UserContactInfo describes the methods by which a User may be reached. The uniqueness of e-mail
addresses SHALL NOT be required: Users may share primary or alternate e-mail addresses within or

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 219

across Accounts. The PrimaryE-mail and AlternateE-mail elements SHALL be limited to
DCOORD_EMAIL_ADDRESS_MAXLENGTH.

Element Attribute Definition Value Card.

UserContactInfo dece:UserContactInfo-
type

PrimaryE-mail Primary e-mail address for
User.

dece:ConfirmedCommunica
tionEndpoint-type

AlternateE-mail Alternate e-mail addresses,
if any

dece:Confirmed
CommunicationEndpoint-
type

0..n

Address Mailing address dece:Confirmed
PostalAddress-type

0..1

TelephoneNumber Phone number (uses
international format, that
is, +1).

dece:Confirmed
CommunicationEndpoint-
type

0..1

Mobile TelephoneNumber Phone number (uses
international format, that
is, +1).

dece:Confirmed
CommunicationEndpoint-
type

0..1

Table 75: UserContactInfo Definition

14.2.12ConfirmedCommunicationEndpoint Definition

E-mail addresses SHOULD be confirmed by the Coordinator or other entity. The Coordinator SHALL
reflect the status of the confirmation after confirmation is obtained (using appropriate mechanisms).

An e-mail address is considered confirmed if either

• The Coordinator has received a response to a verification email within
DCOORD_CONFIRMATION_AGE of current time

• A Node has attested that email verification was performed by a third party by setting the
verificationEntity attribute to a URL representing the third party. Note that
verificationEntity is included in the VerificationAttribute-group.

Element Attribute Definition Value Card.

Confirmed Communication
Endpoint

 dece:Confirmed
CommunicationEndpoint-
type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 220

Element Attribute Definition Value Card.
 VerificationAttr

-group
 dece:VerificationAttr-

Group
0..1

Value The string value of the
User attribute.

xs:string

ConfirmationEndpoint When confirmation actions
occur, this value indicates
the URI endpoint used to
perform the confirmation
(may be a mailto:URI, an
https:URI, a tel:URI or
other scheme).

xs:anyURI 0..1

VerificationToken This value is only known
only to the Coordinator
and cannot be set or
retrieved via any API
invocation.
This element SHOULD NOT
be used.

xs:string 0..1

Table 76: ConfirmedCommunicationEndpoint Definition

14.2.13Languages Definition

The Languages element specifies which language or languages the User prefers to use when
communicating. The language should be considered preferred if the Primary attribute is TRUE. A primary
language should be preferred over any language whose Primary attribute is missing or FALSE. Language
preferences SHALL be used by the Coordinator to determine user-interface language, and MAY be used
for other user interfaces. At least one language must be specified.

HTTP-specified language preferences as defined in [RFC2616] SHOULD be used when rendering user
interfaces to the Coordinator. For API-based interactions, the Coordinator SHOULD use the language
preference stored by the User resource when returning system messages such as error messages. (The
User is derived from the associated Delegation Security Token presented to the API endpoint.)
Languages extends the xs:language type with the following elements.

Element Attribute Definition Value Card.

Languages dece:Languages-type
extends xs:language

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 221

Element Attribute Definition Value Card.
 primary If TRUE, language is the

preferred language for the
User.

xs:boolean 0..1

Table 77: Languages Definition

14.2.14UserList Definition

This construct provides a list of Users either by reference or value. The list of Users by value is only
available to the urn:dece:role:dece:customersupport Role.

Element Attribute Definition Value Card.

UserList-type

ch
oi

ce
 UserReference The unique identifier of the User dece:EntityID-type 0..n

User The User element dece:User-type 0..n

Table 78: UserList Definition

14.3 User Status and APIs Availability

As the User status evolves per the diagrams in section 5.8, certain Coordinator APIs will become
available to Nodes (assuming they have a delegation token targeted to that particular User). The table in
Appendix H details the availability of each API based on the User status. Note that the table accounts for
the differences between Nodes and their Customer Support roles, but does not distinguished between
Node Roles (see appendix A for a complete list of API availability per Node Role).

14.4 User Transition from Youth to Adult

When a User transitions through age categories as defined by [DGeo], the Coordinator will automatically
adjust the applicable User and Policy resources as described in [DGeo]. The Coordinator SHALL complete
these actions within 24 hours of the transition day. If the date of birth of the User contains only year and
month, the Coordinator SHALL perform those actions within 24 hours of the first day of that month.

14.5 User Status Transitions
The possible Status values are: active, pending, deleted, forcedeleted, blocked, blocked:clg,
blocked:tou, suspended, mergedeleted and deidentified.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 222

15 Node Management

A Node is an instantiation of a Role. Nodes are known to the Coordinator and must be authenticated to
perform Role functions. Each Node is represented by a corresponding Node resource in the Coordinator.
Node resources are only created as an administrative function of the Coordinator and must be
consistent with business and legal agreements.

Nodes covered by these APIs are listed in the table below. API definitions make reference to one or
more Roles, as defined in the table below, to determine access policies. Each Role identified in this table
includes a customersupport specialization, which usually has greater capabilities than the primary Role.
Each specialization shall be identified by adding the suffix :customersupport to the primary Role. In
addition, there is a specific Role identified for DECE customer support.

Role Name Role URN

Retailer urn:dece:role:retailer[:customersupport]

Linked LASP urn:dece:role:lasp:linked[:customersupport]

Dynamic LASP urn:dece:role:lasp:dynamic[:customersupport]

DSP urn:dece:role:dsp[:customersupport]

DECE Customer Support urn:dece:role:dece:customersupport

Web Portal urn:dece:role:portal[:customersupport]

Content Provider urn:dece:role:contentprovider[:customersupport]

Access Portal urn:dece:role:accessportal[:customersupport]

Coordinator Customer Support urn:dece:role:coordinator:customersupport

Table 79: Roles

15.1 Nodes

Node resources are created through administrative functions of the Coordinator. These resources are
thus exclusively internal to the Coordinator.

The Node resources supply the Coordinator with information about the Node implementations. Once a
Node is implemented and provisioned with its credentials, it may access the Coordinator in accordance
with the access privileges associated with its Role.

15.1.1 Customer Support Considerations

For the purposes of authenticating the customer support Role specializations of parent Roles, the
NodeID SHALL be unique. Customer Support Nodes SHALL be authenticated by a unique x509 certificate.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 223

The Coordinator SHALL associate the two distinct Roles. Delegation Security Token profiles specified in
[DSecMech] which support multi-party tokens SHOULD identify the customer support specialization as
part of the authorized bearers of the Security Token.

For example, using the [SAML] delegation token profile, the AudienceRestriction for a SAML token
issued to a retailer should include both the NodeID for the urn:dece:role:retailer Role and the
NodeID for the urn:dece:role:retailer:customersupport Role.

In addition, should a resource have policies which provide the creating Node privileged entitlements, the
customer support specialization of that Role SHALL have the same entitlements. This shall be
determined by each Nodes association to the same organization. This affiliation is determined by
inspecting the OrgID values for each of the Nodes in question.

15.1.2 Basic API Usage by the DECE Customer Care Role

The following is an overview of a customer care applications use of these APIs.

• Finding a User: DECE Customer Support performs a query using the ResourcePropertyQuery
defined in [DCoord] section 17.3.

• Obtaining a Delegation Security Token: DECE Customer Support uses the Delegation Security
Token Service defined in [DSecMech] section 8.

• Obtaining a Resource within an Account (e.g. User, Right, Policy, etc...): DECE Customer Support
performs the UserGet API defined in [DCoord] section 14, using the Delegation Security Token
obtained above.

15.1.3 Determining Customer Support Scope of Access to Resources

Most resources of the Coordinator are defined with processing rules on the availability of such resources
based on their status. For example, Users that have a status of urn:dece:type:status:deleted are
not visible to Nodes. This restriction SHALL be relaxed for customer support specializations of the Role
(of the same organization, as discussed above). That is, Customer Support Nodes will see resources with
status such as urn:dece:type:status:deleted and urn:dece:type:status:mergedeleted.

15.2 Node and Organization Functions

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 224

15.2.1 NodeGet()

NodeGet() retrieves descriptive information about a Node.

15.2.1.1 API Description

This is the means to obtain Node information from the Coordinator.

15.2.1.2 API Details

Path:

 [BaseURL]/Node/{NodeID}

Method: GET

Authorized role:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:dece[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]
urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:portal[:customersupport]

Request Parameters:

NodeID – the unique identifier for a Node

Request Body: None

Response Body: Node

15.2.1.3 Behavior

The identified Node is returned.

If the requestor is the requested Node or it is a member of the Organization of the requested Node, the
complete Node resource is returned. Otherwise the Coordinator SHALL omit any of the following XML
elements from its response:

• //Node/KeyDescriptor
• //Node/DECEProtocolVersion
• //Node/OrgAddress
• //Node/Contacts
• //Node/MediaDownloadLocationBase

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 225

15.2.2 NodeList()

NodeList returns a set of Nodes.

15.2.2.1 API Description

This is the means to obtain Node(s) information from the Coordinator.

15.2.2.2 API Details

Path:

 [BaseURL]/Node/List[?response={responseType}]

Method: GET

Authorized role:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:dece[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]
urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:portal[:customersupport]

Request Parameters: None

response – optional. By default, that is if no request parameter is provided, the operation returns
a list of Nodes. When present, the response parameter can be set to one of the 2 following
values:

• node – return the actual Nodes (default setting)

• reference – return references to the Nodes (NodeReference)

For example,[BaseURL]/Node/List?response=node will instruct the Coordinator to return a
list of Nodes.

Request Body: None

Response Body: NodeList

15.2.2.3 Behavior

A collection containing all of the Nodes in the system is returned.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 226

If the requestor is a member of the same Organization or if its one of
urn:dece:role:dece:[customersupport] or urn:dece:role:coordinator:[customersupport] roles, the
complete NodeList is returned. Otherwise the Coordinator SHALL omit any of the following XML
elements from its response:

• //Node/KeyDescriptor
• //Node/DECEProtocolVersion
• //Node/OrgAddress
• //Node/Contacts
• //Node/MediaDownloadLocationBase

15.2.3 NodeCreate(), NodeUpdate()

Nodes are managed by the Coordinator in order to ensure licensing, conformance, and compliance
certifications have occurred.

15.2.3.1 API Details

Path:

[BaseURL]/Node

[BaseURL]/Node/{EntityID}

Method: POST | PUT

Authorized role: urn:dece:role:coordinator:customersupport

Request Parameters:

Request Body:

Element Attribute Definition Value Card.

Node dece:NodeInfo-type

Response Body: None

15.2.3.2 Behavior

With a POST, Node resource is created. Nodes become active when the Coordinator has approved the Node for
activation.

With a PUT, an existing Node resource identified by the EntityID in the resource request is replaced by
the new information. The Coordinator keeps a complete audit of behavior.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 227

15.2.4 NodeDelete()

Node resources cannot simply be deleted, as in many cases, User experience may be affected and
portions of the ecosystem may not operate correctly.

15.2.4.1 API Description

The Node’s status is set to deleted.

15.2.4.2 API Details

Path:

[BaseURL]/Node/{EntityID}

Method: DELETE

Authorized role: urn:dece:role:coordinator:customersupport

Request Parameters: EntityID is the unique identifier for a Node

Request Body: None

Response Body: None

15.2.4.3 Behavior

The Node status is set to “deleted”. API access to the Node is terminated.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 228

15.2.5 OrganizationGet()

OrganizationGet() retrieves descriptive information about an Organization.

15.2.5.1 API Description

This is the means to obtain Organization information from the Coordinator.

15.2.5.2 API Details

Path:

BaseURL]/Org/{OrganizationID}

Method: GET

Authorized role:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:coordinator:[customersupport]
urn:dece:role:dece[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:lasp:dynamic[:customersupport]
urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:portal[:customersupport]

Request Parameters:

OrganizationID – the unique identifier for an Organization

Request Body: None

Response Body: Organization

15.2.5.3 Behavior

If the requestor is a member of the requested Organization or if its one of
urn:dece:role:dece:[customersupport] or urn:dece:role:coordinator:[customersupport] roles, the
complete Organization resource is returned. Otherwise the Coordinator SHALL omit the following XML
elements from the response:

• //Organization/OrgAddress
• //Organization/Contacts
• //Organization/MediaDownloadLocationBase

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 229

15.3 Node Types

15.3.1 NodeList Definition

The NodeList element is a list of Nodes either by value or reference.

Element Attribute Definition Value Card.

NodeList dece:NodeList-type

ch
oi

ce
 NodeReference dece:EntityID-type 0..n

Node dece:NodeInfo-type 0..n

 ViewFilterAttr Response filtering

information, see section 17.5

dece:ViewFilterAttr-type

Table 80: NodeList Definition

15.3.2 NodeInfo Definition

The NodeInfo element contains a Node’s information. The NodeInfo-type extends the OrgInfo-type
with the following elements.

Element Attribute Definition Value Card.

NodeInfo dece:NodeInfo-type

extends dece:OrgInfo-
type

 NodeID Unique identifier of the Node dece:EntityID-type 0..1
Role Role of the Node (a URN of the form

urn:dece:role:<Role name>
xs:anyURI

DeviceManagement
URL

 Indicates the URL for a user
interface which provides legacy
device management functionality.
This value must only be present for
the retailer Role.

xs:anyURI 0..1

DECEProtocol Version The DECE Protocol version or
versions supported by this Node.
Valid values are specified in 22

xs:anyURI 0…n

KeyDescriptor See Section 17.6 dece:KeyDescriptor-type 0…n
ResourceStatus Status of the resource. See section

17.2

dece:ElementStatus-type 0..1

Table 81: NodeInfo Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 230

These types are in the NodeAccess element in the Account-type data element, which is defined in Table
58.

15.3.3 OrgInfo-type Definition

Element Attribute Definition Value Card.

OrgInfo dece:OrgInfo-type

 organizationID Unique identifier for
organization defined by
DECE.

md:EntityID-type

DisplayName Localized User-friendly
display name for the
organization.

dece:localized
StringAbstractType

1.n

SortName Name suitable for
performing alphanumeric
sorts

dece:localized
StringAbstractType

0..n

OrgAddress Primary addresses for
contact

dece:Confirmed
PostalAddress-type

0..1

Contacts dece:ContactGroup-type 0..1
Website Link to organization’s top-

level page.

dece:LocalizedURI
Abstract-type

MediaDownload
LocationBase

 Location for media
download, if organization
holds a Retailer Role

xs:anyURI 0..1

LogoResource Reference to logo image.
height and width attributes
convey image dimensions
suitable for various display
requirements

dece:AbstractImage
Resource-type

0..n

Table 82: OrgInfo Definition

15.4 Node and Org Images

Node and Org images are intended for display by the Web Portal and by Account Management
interfaces at other Nodes. For example, the Web Portal uses these images in the Locker view to identify
original Retailers.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 231

During the onboarding process, Node and Org images SHALL be provisioned by the Coordinator for
Retailer, LASP, and Access Portal Roles. The Coordinator MAY provision Node and Org images for other
Roles.

The following refers to images provided by Nodes as referenced by LogoResource. Note that these are
Node requirements, not Coordinator requirements.

• Images SHALL be compliant with [DMeta], Section 3.2. Note that image formats in Section 3.2.2
do not apply.

• Images SHOULD be designed to display against a dark background

• Images SHOULD provide transparency (PNG with Alpha channel) that is suitable for display
against a black or dark background.

• Images SHALL be provided in the following sizes (in pixels):

o For the User LinkedServices and AccountSettings pages: 120 x 80

o For Media List and Media Details pages: 60 x 40

The following Coordinator processing rules and requirements are applied:

• The images will be fetched from the provided URL and hosted at the Coordinator

• The images will be scanned for viruses, and quarantined as necessary

• The image assets will be published at Coordinator-controlled URLs

The following applies to Nodes displaying images referenced by LogoResource.

• Nodes SHOULD display images over a black or dark background. Note that images are designed
to display against a dark background and could have transparent pixels (i.e., alpha channel) that
will display background pixels. Node UI designers need to provide a suitable background, at
least directly underneath images.

15.5 Node Status Transitions
The possible Status values are: active, deleted, pending and suspended.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 232

16 Discrete Media

Discrete Media is the ability for a User to receive a version of the Content on physical media in an
approved format, such as a CSS-protected DVD or a CPRM-protected SD Card. DECE Content may be sold
by a Retailer with or without a Discrete Media Right.

Fulfilling Discrete Media is the process of creating or otherwise providing to a User a physical
instantiation of a right located in an Account’s Rights Locker. The specification is designed with some
generality to support additional media formats as they become available and approved for use.
[DDiscreteMedia] provides an overview of the actual Fulfillment processes.

The Coordinator maintains a record of the availability of fulfillment as one or more Discrete Media
Tokens. Each Discrete Media Token serves as a record of the Discrete Media Right, which identifies
availableand completed fulfillment of the right.

The processe commences when a Retailer creates a Discrete Media Right at the Coordinator (typically,
immediately following the creation of the associated Rights Token). When a Retailer or DSP chooses to
fulfill a Discrete Media Right referenced in a Rights Token, the process begins with directly consuming
the Discrete Media Right.

A User is said to possess a suitable Discrete Media Right should one be indicated in the Rights Token.
This right must be present in the Rights Token in order to obtain a physical media copy of a right
recorded in the locker. These entitlements are identified in the Rights Token as
DiscreteMediaRightsRemaining. It conveys the list of Discrete Media copies that may be made by the
Account. The Coordinator provides a set of APIs, specified here, which enable authorized Roles to
create, update, or fulfill the DiscreteMediaRights present in the Rights Token.

Due to a change of policy, prior versions of these APIs restricted the number of Discrete Media Tokens
to one per Rights Token. As a result, Nodes that support only 1.x versions of this specification will be
limited to fulfilling one Discrete Media Token.

16.1 Discrete Media Functions

Nodes that fulfill Discrete Media SHALL implement the APIs of this section.

The Discrete Media APIs SHALL adhere to the access policies of the Rights Token with which the Discrete
Media resource is associated with respect to User policies, including parental controls.

The Coordinator enforces the maximum number of Discrete Media Rights associated with a given Rights
Token as defined by DISCRETE_MEDIA_LIMIT in [Dsystem].

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 233

In order to supply a Discrete Media Right, a Retailer will be required to create a Discrete Media Right,
and the Coordinator will update the DiscreteMediaRightsRemaining in the Rights Token accordingly.

Any Retailer or DSP may fulfill a Discrete Media Right identified as available in a Rights Token. The
following APIs provide mechanisms for the fulfillment process of Discrete Media:

• DiscreteMediaRightConsume

• DiscreteMediaRightFulfill

In addition to the ResourceStatus, Discrete Media Rights have a ‘state’, which indicates the consumption
disposition of the right. These states include: available, fulfilled and leased.

16.1.1 DiscreteMediaRightCreate()

16.1.1.1 API Description

When a Retailer offers a Discrete Media Right with a Rights Token, or at any time chooses to add Discrete
Media capabilities to an existing Rights Token, the Retailer uses this API to register that right with the
Coordinator, subject to the DISCRETE_MEDIA_LIMIT. Any Retailer may ammend an existing Rights Token
with a Discrete media Right, provided the Retailer has access to the Rights Token via the RightsTokenGet
API after all policy evaluations are applied (including consent and parental control policies).

See also DiscreteMediaRightFulfill (section 16.1.11) which creates and fulfills a Right in a single API call.

16.1.1.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}/DiscreteMediaRight

Method: POST

Authorized Roles:

urn:dece:role:retailer[:customersupport]

Request Parameters:

AccountID – The Account into which to register the Discrete Media Right

RightsTokenID – The Rights Token to which the Discrete Media Right applies

Security Token Subject Scope: urn:dece:role:user

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 234

Opt-in Policy Requirements: urn:dece:type:policy:LockerViewAllConsent if Retailer
is not the issuing Retailer.

Request Body: DiscreteMediaToken

Element Attribute Definition Value Card.

DiscreteMediaToken See Table 83 dece:DiscreteMediaTo
ken-type

Response Body: None.

16.1.1.3 Request Behavior

The Retailer creates a Discrete Media Token which SHALL only include:

• The MediaProfile element, indicating which Media Profile can be used for fulfillment.

• The AuthorizedFulfillmentMethods, which indicates which DiscreteMediaFulfillment
methods can be used for the indicated Rights Token and Media Profile.

• The RightsTokenID element.

The Coordinator then:

• Assigns the DiscreteMediaTokenID,

• Sets the State to available,
• Sets the RightsTokenID form the value supplied in the invocation URI,

• Increments the DiscreteMediaRightsRemaining and populates FulfillmentMethod of the
associated Rights Token

When a DiscreteMedia Right is created, the Coordinator does not enforce any constraints expressed in
the AssetRestriction element of the corresponding Logical Asset. Enforcement, if any, is performed
by Nodes.

16.1.1.4 Response Behaviour

Successful creation will respond with the Location of the newly created resource, or an error (see
section 21.1).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 235

16.1.2 DiscreteMediaRightUpdate()

16.1.2.1 API Description

This API allows a Retailer to update a previously created Discrete Media Right. Only the Node or any
other Retailer Affiliated Node that created the Discrete Media Right can update it. The full Discrete
Media Token shall be submitted, however, only the MediaProfile and AuthorizedFulfillmentMethod
values may be updated.

16.1.2.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}/DiscreteMediaRight/{DiscreteMedia
RightID}

Method: PUT

Authorized Roles:

urn:dece:role:retailer[:customersupport]

Request Parameters:

AccountID is the unique identifier for an Account
RightsTokenID is the unique identifier for a right
DiscreteMediaRightID is the unique identifier for a Discrete Media Right

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: none

Request Body: DiscreteMediaToken

Element Attribute Definition Value Card.

DiscreteMediaToken See Table 83 dece:DiscreteMediaTo
ken-type

Response Body: none

16.1.2.3 Request Behavior

The Retailer updates a Discrete Media Token which must only alter:

• The MediaProfile element

• The AuthorizedFulfillmentMethods

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 236

The Coordinator validates the updated Discrete Media Right in an identical fashion to those defined above to
DiscreteMediaRightCreate().

16.1.2.4 Response Behaviour

If successful, a 200 OK response is given, otherwise, for 400-class errors, the errors are provided in the
body.

16.1.3 DiscreteMediaRightDelete()

16.1.3.1 API Description

This API allows the Retailer or Affiliated Node who created the Discrete media Right can delete the
Discrete Media Right. Only a Discrete Media Right in the available state may be deleted.

16.1.3.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}/DiscreteMediaRight/{DiscreteMedia
RightID}

Method: DELETE

Authorized Roles:

urn:dece:role:retailer[:customersupport]

Request Parameters:

AccountID is the unique identifier for an Account
RightsTokenID is the unique identifier for a right
DiscreteMediaRightID is the unique identifier for a Discrete Media Right

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: none

Request Body: none

Response Body: none

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 237

16.1.3.3 Request Behavior

The Retailer may delete a Discrete Media Right if its state is available, and the requesting Node is an
Affiliated Node.

The Coordinator shall follow the deletion by adjusting the associated Rights Token’s
DiscreteMediaRightsRemaining value appropriately, and may be required to adjust the Rights Token’s
FulfillmentMethod.

16.1.3.4 Response Behaviour

If successful, a 200 OK response is given, otherwise, for 400-class errors, the errors are provided in the
body.

16.1.4 DiscreteMediaRightGet()

16.1.4.1 API Description

Allows an API Client to obtain the details of a Discrete Media Token.

16.1.4.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}/DiscreteMediaRight/{DiscreteMedia
RightID}

Method: GET

Authorized Roles:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:dece[:customersupport]
urn:dece:role:dsp[:customersupport]
urn:dece:role:lasp[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]

Request Parameters:

AccountID is the unique identifier for an Account
DiscreteMediaRightID is the unique identifier for a Discrete Media Token
RightsTokenID is the unique identifier for a rights token

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 238

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: Access is restricted to only those API Client that can view the associated
Rights Token.

Request Body: None

Response Body:

Element Attribute Definition Value Card.

DiscreteMediaToken Describes the Discrete Media
Right for a Rights Token

DiscreteMediaToken-
type

16.1.4.3 Behavior

Since basic Discrete Media Rights are visible within the Rights Token, only those roles associated with
fulfillment can utilize this API, which simplifies policy controls on Account Resources.

16.1.5 DiscreteMediaRightList()

16.1.5.1 API Description

Allows a API Client to obtain a list of DiscreteMediaTokens issued against a particular rights token.

16.1.5.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}/DiscreteMediaRight/List

Method: GET

Authorized Roles:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:dece[:customersupport]
urn:dece:role:dsp[:customersupport]
urn:dece:role:lasp[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]

Request Parameters:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 239

AccountID is the unique identifier for an Account

RightsTokenID is the unique identifier for a Rights Token

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: Access is restricted to only those API Client that can view the associated
Rights Token.

Request Body: None

Response Body:

Element Attribute Definition Value Card.
DiscreteMediaTok
enList

 A collection of
DiscreteMediaToken
resources

DiscreteMediaTokenList-
type

16.1.5.3 Behavior

Resource visibility must follow the same policies as a single Discrete Media resource request, thus
DiscreteMediaTokens which cannot be accessed SHALL NOT be included in the list.

Only tokens for which the state is:

urn:dece:type:state:discretemediaright:available,
urn:dece:type:state:discretemediaright:leased, or
urn:dece:type:state:discretemediaright:fulfilled

shall be returned. All tokens meeting the state requirements above shall be returned.

For Customer Support-originated requests, tokens of all states shall be returned.

The sort order of the response is arbitrary.

16.1.6 DiscreteMediaRightLeaseCreate()

Note: This feature is no longer supported. It is retained here for historical purposes.

This API is used to reserve a Discrete Media Right. It is used by a DSP or a Retailer to reserve the Discrete
Media Right. Once a lease has been created, the Coordinator considers the associated Discrete Media
right fulfilled, until either the expiration date and time of the DiscreteMediaToken resource has been

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 240

reached, or the Node indicates to the Coordinator to either remove the lease explicitly (in the case of
failure), or when a Discrete Media lease is converted to a fulfilled Discrete Media resource.

If a DiscreteMediaToken lease expires, its State attribute shall revert to available by the Coordinator.

16.1.6.1 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}/{MediaProfile}/
DiscreteMediaRight/{DiscreteMediaTokenID}/{DiscreteMediaFulfillmentMethod}/Lease

Method: POST

Authorized Roles:

urn:dece:role:dsp
urn:dece:role:retailer

Any Retailer or DSP may request a lease, provided they have access to the associated Rights Token.

Request Parameters:

AccountID is the unique identifier for an Account
RightsTokenID is the unique identifier for a rights token
MediaProfile is the identifier of the PurchaseProfile’s MediaProfile being fulfilled
DiscreteMediaTokenID is the unique identifier for a discrete media rights token
DiscreteMediaFulfillmentMethod is the DiscreteMediaFulfillmentMethod identifier for which
fulfillment has commenced.

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: urn:dece:type:policy:LockerViewAllConsent

Request Body: Null

Response Body: DiscreteMediaRight Resource

16.1.6.2 Requester Behavior

To obtain a lease on a Discrete Media right (thus reserving a Discrete Media right from being fulfilled by
another entity), the Node POSTs a request to the resource (with no body). The requestor SHALL NOT use
DiscreteMediaLeaseCreate() unless it is in the process of preparing to Fulfill Discrete Media.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 241

A lease SHALL be followed within the expiration time specified in the DiscreteMediaToken with
DiscreteMediaRightLeaseRelease, DiscreteMediaRightLeaseConsume or
DiscreteMediaRightLeaseRenew.

If a requestor needs to extend the time, DiscreteMediaRightLeaseRenew() SHOULD be invoked, but only
before the lease expiration date and time is reached.

16.1.6.3 Responder Behavior

If no error conditions occur, the Coordinator SHALL respond with an HTTP 200 status code and a
DiscreteMediaRight body.

The Coordinator SHALL monitor the frequency leases are allowed to expire by a Node without releasing,
renewing, or fulfilling them. Nodes which reach the expiration limit determined by the defined
Ecosystem parameter DCOORD_DISCRETEMEDIA_LEASE_EXPIRE_LIMIT may be prevented from creating
new leases until the use of the APIs is corrected.

Leases SHALL NOT exceed the duration determined by the defined Ecosystem parameter
DCOORD_DISCRETEMEDIA_LEASE_DURATION.

Lease renewals SHALL NOT exceed the amount of time determined by the defined Ecosystem parameter
DCOORD_DISCRETEMEDIA_LEASE_MAXTIME.

The Coordinator shall record the requested DiscreteMediaFulfillmentMethod in the Discrete Media
Right’s FulfillmentMethod element.

The Coordinator shall record the requested MediaProfile in the Discrete Media Right’s MediaProfile
element.

The Coordinator shall record the UserID in the Discrete Media Right’s UserID element from the
corresponding value in the provided Security Token.

16.1.7 DiscreteMediaRightLeaseConsume()

Note: This feature is no longer supported. It is retained here for historical purposes.

16.1.7.1 API Description

When a Discrete Media Lease results in the successful fulfillment of physical media, the Node that holds
the lease converts the Discrete Media State from leased to fulfilled.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 242

16.1.7.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/DiscreteMediaRight/{DiscreteMediaRightID}/Lease/C
onsume

Method: POST

Authorized Roles:

urn:dece:role:dsp[:customersupport]
urn:dece:role:retailer[:customersupport]
urn:dece:role:dece:customersupport

Request Parameters:

AccountID is the unique identifier for an Account
DiscreteMediaRightID is the unique identifier for a Discrete Media Right

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: Access is restricted to only those Nodes that can view the associated Rights
Token.

Request Body: None

Response Body:

The Discrete Media Right resource dece:DiscreteMediaToken-type is returned in the response,
incorporating the updated State attribute to fulfilled.

Element Attribute Definition Value Card.

DiscreteMediaToken The DiscreteMediaToken resource
(after updating the type from
leased to fulfilled)

DiscreteMediaToken-type 1

16.1.7.3 Behavior

The Node that holds the Discrete Media lease (identified by the Discrete Media identifier), SHALL
consume a Discrete Media lease. Nodes that do not properly manage their leases may be
administratively blocked from performing Discrete Media resource operations until the error is
corrected.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 243

Only the Node who is holding the lease, the retailer who issued the Rights Token, its affiliated DSP role,
and any of their associated customer support specializations may consume a lease.

Upon successful consumption of the lease, the Coordinator shall update the Discrete Media Right’s state
to fulfilled, and update the Discrete Media Right with the UserID identified in the provided Security
Token and the RightsTokenID of the corresponding Rights Token. The Discrete Media Right’s
LeaseExpiration date time element will be removed.

16.1.8 DiscreteMediaRightLeaseRelease()

Note: This feature is no longer supported. It is retained here for historical purposes.

16.1.8.1 API Description

Nodes that obtained a lease from the Coordinator may release the lease if the Discrete Media operation
has failed.

16.1.8.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/DiscreteMediaRight/
{DiscreteMediaRightID}/Lease/Release

Method: POST

Authorized Roles:

urn:dece:role:dece:customersupport
urn:dece:role:coordinator:customersupport
urn:dece:role:dsp[:dsp:customersupport]
urn:dece:role:retailer[:customersupport]

Request Parameters:

AccountID is the unique identifier for an Account
DiscreteMediaRightID is the unique identifier for a Discrete Media Right

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: None

Request Body: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 244

Response Body: DiscreteMediaRight Resource

16.1.8.3 Behavior

Only the Node that holds the lease (and its associated customer support specialization) may release the
lease.

The Coordinator shall remove the Discrete Media Right’s FulfillmentMethod and MediaProfile element
values, and update the state to available.

16.1.9 DiscreteMediaRightConsume()

16.1.9.1 API Description

Some circumstances may allow a Discrete Media right to be immediately converted from a Discrete
Media Right, to a fulfilled Discrete Media Right Resource (with a state of
urn:dece:type:state:discretemediaright:fulfilled).

With the recent change of policy to relax the the number of Discrete Media Tokens per Rights Token,
Coordinator will allow multiple DiscreteMediaTokens to be created under a Rights token. Therefore, the
URL path for this API has been modified to take the DiscreteMediaRightID (and remove MediaProfile
and RightsTokenID) to uniquely identify the Discrete Media Right to be fulfilled.

16.1.9.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/
DiscreteMediaRight/{DiscreteMediaRightID}/{DiscreteMediaFulfillmentMethod}/Consume

Method: POST

Authorized Role:

urn:dece:role:retailer[:customersupport]

Only the Retailer who created the Rights Token and its customer support specialization may invoke this
API.

Request Parameters:

AccountID is the unique identifier for an Account
DiscreteMediaRightID is the unique identifier for a DiscreteMediaRight
DiscreteMediaFulfillmentMethod is the identifier for a defined Discrete Media Profile

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 245

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: urn:dece:type:policy:LockerViewAllConsent

Request Body:

Response Body: DiscreteMediaRight Resource

16.1.9.3 Behavior

Upon successful consumption of the Discrete Media Right, the Coordinator shall update the Discrete
Media Right’s state to fulfilled, and update the Discrete Media Right with the UserID identified in
the provided Security Token and the RightsTokenID of the corresponding Rights Token. The Discrete
Media Right’s FulfillmentMethod element will be populated with the DiscreteMediaFulfillmentMethod
provided in the request. Its MediaProfile element will be populated with the MediaProfile provided in
the request (from the corresponding Rights Token).

16.1.10DiscreteMediaRightLeaseRenew()

Note: This feature is no longer supported. It is retained here for historical purposes.

This operation can be used when there is a need to extend the lease of a Discrete Media Right.

16.1.10.1 API Description

The DSP (or retailer) uses this message to inform the Coordinator that the expiration of a Discrete Media
Right lease needs to be extended.

16.1.10.2 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/DiscreteMediaRight/
{DiscreteMediaRightID}/Lease/Renew

Method: PUT

Authorized Roles:

urn:dece:role:retailer[:customersupport}
urn:dece:role:dsp[:customersupport]

Request Parameters:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 246

AccountID is the unique identifier for an Account
DiscreteMediaRightID is the unique identifier for a Discrete Media Right

Request Body: None

Response Body:

The Discrete Media Right resource dece:DiscreteMediaToken-type is returned in the response,
incorporating the updated ExpirationDateTime.

Element Attribute Definition Value Card.

DiscreteMediaToken dece:DiscreteMediaToken-type

16.1.10.3 Behavior

Only the Node that holds the lease (and its associated customer support specialization) may renew the
lease.

The Coordinator may add a period of time up to the length of time determined by the defined
Ecosystem parameter DCOORD_DISCRETEMEDIA_LEASE_DURATION to the identified Discrete Media
Right lease. Leases may only be renewed up to the maximum length of time determined by the defined
Ecosystem parameter DCOORD_DISCRETEMEDIA_LEASE_MAXTIME.

A new lease must be requested once a lease has exceeded the maximum time allowed.

The Coordinator SHALL NOT issue a lease renewal that exceeds the expiration time of the Security Token
provided to this API. In this case the Coordinator SHALL set the lease expiration to match the Security
Token expiration.

16.1.11DiscreteMediaRightFulfill()

The DiscreteMediaRightFulfill API is very similar to the DiscreteMediaRightCreate API defined in section
16.1.1, however the outcome of the API invocation is a fulfilled Right (as if a Node called both
DiscreteMediaRightCreate and DiscreteMediaRightConsume), providing a more efficient API for
Retailers.

16.1.11.1 API Details

Path:

[BaseURL]/Account/{AccountID}/RightsToken/{RightsTokenID}/DiscreteMediaRight/Fulfill

Method: POST

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 247

Authorized Roles:

urn:dece:role:retailer[:customersupport]

Request Parameters:

AccountID – The Account into which to register the Discrete Media Right

RightsTokenID – The Rights Token to which the Discrete Media Right applies

Security Token Subject Scope: urn:dece:role:user

Opt-in Policy Requirements: urn:dece:type:policy:LockerViewAllConsent if Retailer is not
the issuing Retailer.

Request Body: DiscreteMediaToken

Element Attribute Definition Value Card.

DiscreteMediaToken See Table 83 dece:DiscreteMediaTo
ken-type

Response Body: None.

16.1.11.2 Request Behavior

The Retailer creates a fulfilled Discrete Media Token which SHALL only include:

• The MediaProfile element, indicating which Media Profile was used for fulfillment.

• The DiscreteMediaFulfillment method used to fulfill the DiscreteMediaRight.

• The RightsTokenID element.

• The State attribute SHALL be set to
urn:dece:type:state:discretemediaright:fulfilled

The LeaseExpiration element SHALL NOT be included

16.1.11.3 Response Behavior

Upon successful creation of the fulfilled Discrete Media Token,, the Coordinator shall update the
Discrete Media Right with the UserID identified in the provided Delegation Security Token.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 248

16.2 Discrete Media Data Model

16.2.1 DiscreteMediaToken

When created in a RightsToken, the DiscreteMediaToken will carry the ResourceStatus/Current value
only. The Coordinator generates all other values.

Element Attribute Definition Value Card.

DiscreteMediaTok
en

 Describes the lease on a DiscreteMedia
right

DiscreteMediaToken-type

 DiscreteMedi
aTokenID

A unique, Coordinator-defined identifier for
the token.

xs:anyURI 0..1

 State The state of the right. See Table 85 for
defined values. This value is set by the
Coordinator, except when the
DiscreteMediaRightFulfill API is used.

xs:anyURI 0..1

RequestingUserID When a DiscreteMediaRight is leased or
fulfilled, indicates the UserID associated
with the change.

dece:EntityID-type 0..1

RightsTokenID Indicates the associated Rights Token. Set
by the Coordinator, except when the
DiscreteMediaRightFulfill API is used.

xs:anyURI

DiscreteMediaFulfi
llmentMethod

 When the Discrete Media Right is fulfilled,
the Node sets this value indicating
fulfillment method used.

xs:anyURI

AuthorizedFulfillm
entMethod

 One or more Fulfillment methods
authorized for the indicated Rights Token
and Media Profile. Valid values are defined
in [DDiscrete]. Once the
DiscreteMediaRight is consumed, these
values may be removed.

xs:anyURI 0..n

MediaProfile This value is derived by the Coordinator
from the Rights Token, and is provided
here for convenience.

dece:AssetProfile-
type

0..1

LeaseExpiration If the DiscreteMediaRight is leased, this
indicates when the lease expires.

xs:dateTime 0...1

ResourceStatus The status of the lease. Since the
RightsTokenCreate API sets this value, it is
mandatory.

dece:ElementStatus-
type

0..1

Table 83:DiscreteMediaToken Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 249

16.2.2 DiscreteMediaTokenList Definition

Element Attribute Definition Value Card.
DiscreteMedia
TokenList

 An enumeration of
established Discrete
Media Rights Tokens

dece:Discrete MediaTokenList-type

DiscreteMediaToken dece:Discrete MediaToken-type 0...n

Table 84:DiscreteMediaTokenList Definition

16.2.3 Discrete Media States

State Definition
urn:dece:type:state:discretemediaright:available Indicates that a Discrete Media Right may

be fulfilled

urn:dece:type:state:discretemediaright:fulfilled Indicates that a Discrete Media Right has

been fulfilled

Table 85: Discrete Media States

16.2.4 Discrete Media Resource Status

Discrete Media Resource Statuses can only be affected by the Coordinator and Coordinator Customer
Support roles.

Status Definition
urn:dece:type:status:active Indicates that the Discrete Media Right is

available for Discrete Media API access
(this should not be confused with the
state of the Discrete Media Right, defined
in table 78).

urn:dece:type:status:deleted Indicates that a Discrete Media Right has
been deleted, and no longer available for
lease or fulfillment. This is generally due
to an administrative action.

urn:dece:type:status:other Indicates that a Discrete Media Right is in
an indeterminate state, and is no longer
available for lease or fulfillment. This is
generally due to an administrative action.

Table 86: Discrete Media Resource Status values

Coordinator API Specification Version 2.2

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 250

16.2.5 DiscreteFulfillmentMethod

The following Fulfillment Methods are defined for use in the FulfillmentMethod in the Discrete Media
Right. These methods are derived from Annex A.1 of [DDiscreteMedia].

Fulfillment Method Definition
urn:dece:type:discretemediaformat:dvd:packaged The Packaged DVD form of the Approved

Discrete Media Fulfillment Method.
urn:dece:type:discretemediaformat:bluray:packaged The Packaged Blu-ray form of the Approved

Discrete Media Fulfillment Method as a
packaged fulfillment.

urn:dece:type:discretemediaformat:dvd:cssrecordable The CSS Recordable DVD form of the
Approved Discrete Media Fulfillment
Method.

urn:dece:type:discretemediaformat:securedigital The 3.Recordable SD Card with CPRM to
protect standard definition video form of the
Approved Discrete Media Fulfillment
Method.

urn:dece:type:discretemediaformat:scsa The SCSA Handle form of the Approved
Discrete Media Fulfillment Method.

urn:dece:type:discretemediaformat:nsm The NSM Media form of the Approved
Discrete Media Fulfillment Method.

Table 87: DiscreteMediaFulfillmentMethod

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 251

16.3 Discrete Media State Transitions

Figure 15: Discrete Media Right State Transitions

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 252

17 Other

17.1 Resource Status APIs

17.1.1 StatusUpdate()

17.1.1.1 API Description

This API allows a Resource’s status to be updated. Only the Current element of the resource is updated. The
prior value of Current will be demoted to the History structure.

17.1.1.2 API Details

Path:

{ResourceID}/ResourceStatus/Current/Update

Method: PUT

Authorized Role(s):

urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:portal:customersupport
urn:dece:role:retailer:customersupport
urn:dece:role:accessportal:customersupport
urn:dece:role:lasp:linked:customersupport
urn:dece:role:lasp:dynamic:customersupport
urn:dece:role:contentprovider:customersupport

Status of a resource can only be updated by the Customer Support specialization of Nodes authorized to
update that resource.

Request Parameters: ResourceID is the absolute path of a Resource

Security Token Subject Scope:

urn:dece:user:self
urn:dece:role:user:fullaccess (with further constraints within a given
Geography Policy)

Applicable Policy Classes: The applicable Policy Classes depend on the Resource

Request Body: ResourceStatus

Response Body: None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 253

17.1.1.3 Behavior

Within the Current structure, the AdminGroup element cannot be updated. The AdminGroup element
SHALL NOT be included in the structure sent in the request. All of the other elements of the Current
structure SHALL be present. After the Resource’s status is updated, the 303 (See Other) status code will be
returned, and the requester will be provided the URL of the resource whose status was updated via the
Location HTTP header.

The StatusUpdate API is the exclusive mechanism for transition of a Resource’s Status beyond pending,
active and deleted, and generally performed by administrative activities of customer support functions.
Each Resource definition section provides a state transition diagram which depicts valid status changes.

Security Token Subject Scope may be further restricted by Geography Policies, but at a minimum, Role
restrictions are identical to those specified in the Role Matrix defined in [DSystem] for updating a resource.

Inclusion of ResourceStatus element is optional for Create and Update requests. If included, it shall be
ignored by Coordinator, except when otherwise indicated.

The table below indicates the Resources which may be updated using StatusUpdate():

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 254

Resource Transitions Authorized Roles
From To

Account

pending Active

coordinator:customersupport
dece:customersupport
portal:customersupport
access:customersupport
lasp:*:customersupport
retailer:customersupport

active blocked coordinator:customersupport
dece:customersupport
portal:customersupport

active suspended
blocked active
suspended active

User

active suspended coordinator:customersupport
dece:customersupport
portal:customersupport
access:customersupport
lasp:*:customersupport
retailer:customersupport

pending active
deleted blocked:tou

blocked:clg Any except deleted
suspended active

blocked:tou Active

deleted forcedeleted/mergedeleted coordinator:customersupport
dece:customersupport
portal:customersupport forcedeleted/mergedeleted blocked:tou

RightsToke
n

active pending

retailer:customersupport

pending active
active deleted
deleted active
pending deleted
deleted pending

Basic,
Bundle
Assets

pending active

contentprovider:customersupport

active pending
active other
other active
active suspended

suspended active
17.1.2 suspended 17.1.3 deleted
17.1.4 deleted 17.1.5 active

Digital
Assets

17.1.6 pending 17.1.7 active
contentprovider:customersupport 17.1.8 active 17.1.9 pending

Logical
Assets

17.1.10active 17.1.11suspended

contentprovider:customersupport
17.1.12suspended 17.1.13active
17.1.14suspended 17.1.15deleted
17.1.16deleted 17.1.17active

 17.1.18 17.1.19

17.2 ResourceStatus Definition

The ResourceStatus element is used to capture the status of a resource. When an API invocation for a
Resource does not include values for relevant status fields (relevance is resource- and context-dependent)
the Coordinator SHALL insert the appropriate values.

Element Attribute Definition Value Card.

ResourceStatus dece:ElementStatus-type
Current Current status of the resource (see Table 89) dece:Status-type
History Prior status values dece:StatusHistory-type 0..1

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 255

Table 88: ElementStatus

17.2.1 Status Definition

Element Attribute Definition Value Card.

Status dece:Status-type
Value A URI for resource status (defined as a

restriction to xs:anyURI). Possible values:
urn:dece:type:status:active
urn:dece:type:status:archived
urn:dece:type:status:blocked
urn:dece:type:status:blocked:clg
urn:dece:type:status:blocked:tou
urn:dece:type:status:deleted
urn:dece:type:status:forcedeleted
urn:dece:type:status:other
urn:dece:type:status:pending
urn:dece:type:status:suspended

urn:dece:type:status:mergedeleted
urn:dece:type:status:deidentified

dece:StatusValue-type

Description A free-form description for any additional
details about resource status.

xs:String 0..1

 AdminGroup See Table 96 dece:AdminGroup 0..1
 Modification

Group
See Table 97 Dece:ModificationGroup 0..1

Table 89: Status Definition

17.2.2 StatusHistory Definition

Element Attribute Definition Value Card.

ElementStatus dece:StatusHistory-type
Prior Prior status value dece:PriorStatus-type 1…n

Table 90: StatusHistory Definition

17.2.3 PriorStatus Definition

Element Attribute Definition Value Card.

ElementStatus dece:PriorStatus-type
 ModificationGroup See Table 97 dece:ModificationGroup
Value Status value dece:StatusValue-type
Description xs:string

Table 91: PriorStatus Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 256

17.3 ResourcePropertyQuery()

17.3.1 API Description

This method offers a general mechanism to retrieve information about resource properties.

A Node can use this method to test the existence of a specific resource property at the Coordinator.

For example,

• A Node can test the availability of a Username, or the existence of an email address within the
Coordinator.

• DECE and Coordinator Customer Support Roles can search for Users using various search criteria.

The request is represented by an XPath expression as defined in [XPATH] and further constrained in the
sections below. Expressions also include XPath Functions and Operators as defined in [XPATHFN].

Note that this API uses a very narrow subset of XPath. This could be expanded in the future.

17.3.2 API Details

Path:

[BaseURL]/Info/

Method: POST
Authorized Roles:

urn:dece:role:accessportal[:customersupport]
urn:dece:role:dece[:customersupport]
urn:dece:role:coordinator:customersupport
urn:dece:role:lasp:dynamic[:customersupport]
urn:dece:role:lasp:linked[:customersupport]
urn:dece:role:portal[:customersupport]
urn:dece:role:retailer[:customersupport]

Request Parameters: None

Security Token Subject Scope: none (no Security Token is required for this API); if provided, it is ignored.

Opt-in Policy Requirements: None

Request Body: XPath expression

Response Body: UserList-Type or None

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 257

17.3.3 Behavior

A Node indicates the targeted Resource type and the search criteria within the XPath expression. Per
[XPATH], the general format can be summarized as follows:

 //Targeted_Resource_Type[Search_Criteria]

17.3.3.1 Targeted Resource Type

Requesting Nodes may target different resource types based on their Role. The table below provides details
on Resource accessibility based on the requester’s Role.

Targeted
Resource Type

XPath Path
Expression

Authorized
Requester Roles Response body Comment

User-type //User

DECE & Coordinator
Customer Support

UserList List of Users by value

Any other None Can check existence, but does
not get data

Table 92 Resource Accessibility

17.3.3.2 Search Criteria: XPath Expression

A Search Criteria is an XPath Predicate Expression.

The Coordinator only supports a subset of the XPath expression language. The supported XPath functions
and operators are described in the two tables below.

Allowed XPath Expression Component
(non Customer Support Role) Comment

String
functions

fn:matches($input, $pattern)
Only alphanumeric strings are supported for
$pattern. That is, regular expressions or special
characters (^, $) are not supported.

Operators
=
predicate operators ([])
path operators (/, //)

XPath axes child:: Implicit (need not be included)

Table 93: Supported XPath Expression Components for non Customer Support Role

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 258

Allowed XPath Expression Component
(Customer Support Role) Comment

St
rin

g
fu

nc
tio

ns

fn:matches($input, $pattern)

Only alphanumeric strings are supported
for $pattern. That is, regular expressions
or special characters (^, $) are not
supported.

O
th

er

fu
nc

tio
ns

fn:not(arg)

O
pe

ra
to

rs
 =

!=

and (Boolean operator)
predicate operators ([])
path operators (/, //)

da
te

Ti
m

e
co

m
pa

ris
on

op

er
at

or
s op:dateTime-equal()

op:dateTime-less-than()
op:dateTime-greater-than()

Noted '>', '<' and '=' in expressions.

XP
at

h
ax

es

child:: Implicit (need not be included)

attribute:: Abbreviated as '@'
parent::node() Abbreviated as '..'

Table 94: Supported XPath Expression Components for Customer Support Role

Requestors SHALL NOT include any other XPath expression language component, as they will not be
supported. In particular, XPath axes (other than the ones mentioned in the above tables), node-test (other
than the default node() which is implicit) and local path expressions are not supported.

The following XPath Path Expressions MAY be used in the search Expression. The form given in the table is
consistent with an implicit ‘child::’ XPath Axes.

Path Expression

Search Criteria

Su
bs

tr
in

g

Ac
co

un
t-

sc
op

ed

//User Credentials/Username Y N

ContactInfo/PrimaryEmail/Value Y N

@UserID N Y

Table 95: Supported Path Expressions

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 259

The table above describes the search criteria (aka. Node selections) that can be used to construct a
supported XPath expression. The table’s columns provide the following information:

• Substring: If “N”, only string operators that constitute exact string matches (i.e., = and !=)are
allowed. When “Y”, the XPath [XPATHFN] fn:matches() string operator is allowed. Note
that the XPath fn:matches() string operator returns ‘true’ when substring matches

• Account-scoped: If ”Y”, the result of this search is limited to a particular Account. If ”N” (No),
the search criteria is applied to the all resources. For Account-scoped requests, the AccountID is
either implicit in the provided criteria (e.g. AccountRightsLockerID corresponds to a unique
Account) or is explicitly provided within the XPath expression (e.g.
//Account[@AccountID='urn:dece:accountid:org:dece:CB1234'])

Additional constraints on search criteria are as follows:

• No more than 2 search criteria can be combined together (using XPath’s and operator).

• Search values for the //User/Credentials/Username SHALL be at least
DCOORD_USERNAME_SEARCH_MIN_LENGTH characters long.

• Search values for the //User/ContactInfo/PrimaryEmail/Value SHALL be at least
DCOORD_EMAIL_SEARCH_MIN_LENGTH characters long.

• A maximum of DCOORD_USERLIST_SEARCH_MAX_SIZE matches will be returned for UserList
responses

•

Unlike other API calls that return collections, ResourcePropertyQuery() does not support response
pagination.Criteria that are not scoped to a specific Account may lead to thousands or more matches. It is
strongly recommended that search critera be combined using the XPath operator ‘and’ to reduce the
number of matches.

17.3.3.3 Examples

The following are examples of XPath expressions leveraging different search criteria. Examples 1 and 2 can
be submitted by either a Customer Support Role or a non-Customer Support Role. Other examples are only
for Customer Support Roles.

Example 1 : to search for a list of Users whose primary email address is my_email@example.org.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 260

//User[ContactInfo/PrimaryEmail[Value='my_email@example.org']]

Example 2: to search for a list of Users whose username is 'Craig'.

//User[Credentials[Username='Craig']]

Example 3: to search for a list of Users whose username contains 'Hub':

//User[Credentials/Username[matches(.,'Hub')]]

Example 4: to search for a list of Users whose Username contains 'uBE' but is not 'hubert':

//User[Credentials/Username[matches(., 'uBE') and (.!='hubert')]]

Responses to the DECE and Coordinator Customer Support Role

If the querying Node dons the urn:dece:role:dece:customersupport or
urn:dece:role:coordinator:customersupport Role, responses may, as appropriate, include a body
with a list of element of the targeted resource type.

As with any DECE identifiers (such as UserID) returned by the Coordinator, DECE identifiers are Node-specific
to the urn:dece:role:dece:customersupport or
urn:dece:role:coordinator:customersupport Node performing the query. These Node-specific
identifiers are to be used by the Node to compose additional queries to the Coordinator. Such responses will
be made with the HTTP 200 OK response status, when successful.

If an error occurs during the validation of the request parameters (other than a 404 Not Found error), an
HTTP status of 400 will be returned, and an <ErrorList> body will be included in the response.

If the Node is not allowed to perform this request, a 403 Forbidden HTTP response is returned.

If the search does not yield any matches, a 404 Not Found HTTP response is returned.

Responses to non-DECE and non-Coordinator Customer Support Roles

If an error occurs during the validation of the request parameters (other than a 404 Not Found error), an
HTTP status of 400 will be returned, however no <ErrorList> body will be included in the response.

Otherwise, the result of the request will be an HTTP response code, as follows:

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 261

300 Multiple Choices – the search matched more than one resource. No disambiguation
information will be provided. This will only be returned for queries targeting PrimaryEmail.

302 Found - the search matched an existing entry for the targeted resource type.

400 Bad Request - the XPath expression is not valid, or the request cannot otherwise be fulfilled.

403 Forbidden - the Node is not allowed to perform this request.

404 Not Found – the search did not yield any match.

In addition, temporary or permanent redirects may be indicated in the response, as discussed in section 3.

Nodes other than dece and Coordinator Customer Support SHALL NOT use this API for any purpose other
than 1) to determine ahead of presenting an option to a user that the intended operation would fail or 2) to
provide guidance to a user during Account/User creation. This function is specifically intended to support
Account/User creation or assist Customer Support although there may be other uses in the future.

Nodes SHOULD use this API during the Account creation process to determine if a supplied username is
already in use and if it is in use.

It is anticipated that Nodes will expose to users input mechanisms that will perform existence queries to the
Coordinator using this API. For example, during account create process, assistive techniques to determine if
a user already has an Account, or is trying to select an available Username value. This could facilitate attacks
such as existence proof attacks and account hijacking attempts. To reduce the risk of automated attacks on
this API, Nodes SHALL, in accordance with [DSecMech] 3.4.3, employ a reverse Turing test when the Node
detects repeated attempts to obtain information via this API. The Node may implement its own policy,
however, at a minimum 3 attempts from the same web page or HTTP session within 5 minutes should be
considered repeated attempts.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 262

17.4 Other Data Elements

17.4.1 AdminGroup Definition

The AdminGroup provides a flexible structure to store information about the creation and deletion date (as
well as the unique identifier of the entity that performed the operation) of an associated resource. For
privacy and security reasons, the information about the author of any creation or deletion (that is, the
values of the Createdby and DeletedBy attributes) must only be present when:

• The requester is the owner of the associated resource.

• The requester is associated to the resource’s creator.

Element Attribute Definition Value Card.

AdminGroup dece:AdminGroup
 Creation Date xs:dateTime 0..1
 CreatedBy dece:EntityID-type 0..1
 Deletion Date xs:dateTime 0..1
 DeletedBy dece:EntityID-type 0..1

Table 96: AdminGroup Definition

17.4.2 ModificationGroup Definition

The ModificationGroup provides the modification date and identifier for an associated resource. For privacy
and security reasons, the information about the author of any creation or deletion (that is, the values of the
Createdby and DeletedBy attributes) must only be present when:

• The requester is the owner of the associated resource.

• The requester is associated to the resource’s creator.

Element Attribute Definition Value Card.

ModificationGroup dece:ModificationGroup
 Modification Date xs:dateTime 0..1
 ModifiedBy dece:EntityID-type 0..1

Table 97: ModificationGroup Definition

17.5 ViewFilterAttr Definition

The ViewFilter attribute defines a set of attributes used when an offset request has been made. The
attributes are defined in section 3.15.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 263

Element Attribute Definition Value Card.

ViewFilter
Attr

 dece:ViewFilterAttr-
type

 FilterClass Any of the filters defined in section 3.15
If more than one filter is used, the filters SHALL be
concatenated using ‘+’ as a separator (e.g.
urn:dece:type:viewfilter:lastmodifiedd

ate+urn:dece:type:viewfilter:userbuyer)

xs:NMTOKENS 0..1

 FilterOffset xs:NonNegativeInteger 0..1
 FilterCount xs:int 0..1
 FilterMoreA

vailable
 xs:boolean 0..1

 FilterDRM xs:string 0..1

Table 98: ViewFilterAttr Definition

17.6 LocalizedStringAbstract Definition

Element Attribute Definition Value Card.

Localized String Abstract dece:LocalizedString
Abstract-type

extends xs:string

 Language xs:language

Table 99: LocalizedStringAbstract Definition

17.7 KeyDescriptor Definition

The KeyDescriptor element describes the cryptographic keys used to protect communication between the
Coordinator and a provisioned Node.

Element Attribute Definition Value Card.

KeyDescriptor dece:KeyDescriptor-type
 use dece:KeyTypes 0..1
KeyInfo See [DSecMech]

section 5.7

ds:KeyInfo

EncrytpionMethod See [XMLENC] xenc:EncryptionMethod
type

Table 100: KeyDescriptor Definition

17.8 SubDividedGeolocation-type Definition

SubDivided geolocations is a general mechanism which provides varying granularity of a physical location
which may be used for windowing, auditing or other purposes. Population of this element should be
considered best-effort unless otherwise indicated for a specific purpose.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 264

Element Attribute Definition Value Card.

SubDividedGeolocation-type Extends xs:string

See 0 for potential values.

 Confidence An optional indication of
the subjective quality of
the geolocation value.

xs:positiveInteger

Value range is 1 to 100, where 1
indicates a very low confidence,
and 100 indicates absolute
certainty. CalculationMethod will
likely inform possible upper
bounds of confidence.

0..1

 Calculation
Method

A URN indicating the
methodology employed to
calculate the geolocation
string value.

xs:anyURI

See 17.8.2 for defined values.

 ViaProxy A indication on whether or
not the submitted believes
geography data may have
been derived from a
network proxy, rather than
from the client directly.

urn:dece:type:true
urn:dece:type:false
urn:dece:type:unknown

The default value is:
urn:dece:type:unknown

0..1

Table 101: SubDividedGelocation-type Definition

17.8.1 SubDividedGeolocation Values

The SubDividedGeolocation element, when present, SHALL be populated as follows and in accordance with
[ISO3166-1] and [ISO3166-2], using the most precise value available to the Node:

1. ISO 3166-1-alpha-2 code (if no finer detail)
Examples: Canada = “CA”; United States = “US”; China = “CN”

2. ISO 3166-1-alpha-2 code + space + [postal code]
Examples: Acadia Valley, Alberta, Canada = “CA T0J 0A0”; Abbeville, Alabama, US = “US 36310”;
Shanghai, China (entire municipality) = “CN 200000”; Pudong New District, Shanghai, China = “CN
200120”

3. ISO 3166-2 code (ISO 3166-1-alpha-2 code + "-" + ISO 3166-2 subdivision code [2-3 characters])
Examples: Alberta, Canada = “CA-AB”; Northwest Territories, Canada = “CA-NT”; Alabama, US = “US-
AL”; District of Columbia, US = “US-DC”

Where [postal code] meets local postal code syntax requirements. If the calculation method does not
provide a precise postal code (for example it indicates only a province or state but not a city or post office) it
is acceptable to omit part of the code for multipart codes (e.g., 98333 instead of 98333-9667 in the U.S. or
V5K instead of V5K 1B8 in Canada) or use zeroes (e.g., 200000 or 200100 instead of 200120 in China or
97000 instead of 97604 in the U.S.).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 265

17.8.2 CalculationMethod Values

The calculation method indicates what methodology was employed to determine the supplied
SubDividedGeolocation value. The following values are defined:

1. urn:dece:type:geoloc:networkaddress – the calculation method employed a network address to geolocation
algorithm (either commercial or proprietary). For example, calculated from a public IP address.

2. urn:dece:type:geoloc:networkderived - the calculation method employed another network-based mechanism.
For example, mobile network triangulation.

3. urn:dece:type:geoloc:gps - the calculation method employed an available Global Positioning System – based
coordinate.

4. urn:dece:type:geoloc:usersupplied - the calculation method employed a location which was supplied by a user
manually

5. urn:dece:type:geoloc:confirmedpostaladdress – the calculation method employed a location which was
determined from on a street address known to be valid by the Node. For example, an established street
address based on a billing system record.

6. urn:dece:type:geoloc:other – the calculation method employed a location which was determined through
another, unspecified means.

17.9 Transaction and TransactionList Definitions

The Transaction element is used to log information about an event. A Node can then retrieve that record in
order to support activities like Customer Support.

A Transaction Resource is defined as a Transaction-type as follows:

Element Attribute Definition Value Card.

Transaction dece:Transaction-type
 transactionDate Date transaction occurred xs:dateTime 0..1
 transactionID Unique ID for transaction as

defined in Section 3.13.

xs:string 0..1

InvokingUserID Unique identifier of the User on
whose behalf the event occurred.

dece:EntityID-type 0..1

InvokingNodeID Unique identifier of the Node that
requested the action recorded in
this transaction.

dece:EntityID-type

ResourceType A user-friendly name of the
resource type that was accessed
during this event.

xs:string

ResourceID The unique identifier of the
resource that was accessed during
this event.

dece:EntityID-type

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 266

Element Attribute Definition Value Card.
APIMethod A user-friendly name of the API

method invoked during this
event.

xs:string

RequestURL The invocation URL as used during
this event.

xs:anyURI

HTTPStatusCode The HTTP status code returned by
the Coordinator.

xs:positiveInteger

PrimaryErrorCode If an error occurred, this is the
primary error code.

dece:EntityID-type 0..1

PrimaryErrorMessage If an error occurred, this is the
message that accompanies the
primary error code.

xs:string 0..1

Description A human-friendly description of
the transaction. This will not
necessarily be populated in the
near-term.

xs:string 0..1

Table 102: Transaction Definition

A TransactionList is a list of Transactions.

Element Attribute Definition Value Card.

TransactionList dece:TransactionList-type
 AccountID dece:EntityID-type 0..1
Transaction A transaction record. dece:Transaction-type 0..n

Table 103: TransactionList Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 267

18 Push Notification

The existing mechanism for Nodes (Retailers, LASPs, and Access Portals) to use ETag-based polling to
retrieve data from the Coordinator and manage updates is supplemented with a publish/subscribe
framework. Changes to a Rights Locker or UserLinkConsent Policies will be the first events using this service.
Additional notifications may be added at a future date.

Each event type will have its own Topic and Nodes will have their own set of Topics that they can subscribe
to. The Coordinator acts as the event publisher and publishes Notification events, via one or more
established Pub/Sub systems. Appendix I documents the details of each supported system.

The Coordinator publishes one topic per event class per Node. Nodes can request to subscribe to push
either during onboarding or subsequently by contacting the Coordinator.

For each supported event type listed below, the Coordinator publishes a message to each Node, and
includes UserIDs for each User having the UserLinkConsent policy in place. For example, if an account has
two users and three linked nodes, for any change to RightsToken(s) in the account, there will be three event
messages generated, one event generated for each of the three linked nodes.

Nodes can call the RightsLockerDataGet and RightsTokenGet APIs to update their caches.

18.1.1 Supported Event Classes

Presently, 2 event classes are provided: Rights Locker changes and the removal of UserLinkConsent policies.
Other event classes may be supported in future.

18.1.1.1 Rights Locker Notifications

Notifications will be initiated as a result of any change to the Locker collection, including the addition,
deletion or update of a Right in an account.

All Nodes that have indicated support for notifications, and that have an active UserLinkConsent Policy in
place for the associated Account will receive Rights Locker Notifications, including the Node that caused the
Notification event to occur.

18.1.1.2 PolicyDelete Notifications

This Notification is the result of the deletion of the UserLinkConsent policy for a User for one or more Nodes.

All Nodes that have indicated support for notifications, have an active UserLinkConsent Policy in place for
the associated Account, and belong to the same Organization will receive notifications.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 268

18.1.2 Eligibility for Subscriptions

The following Nodes are eligible for establishing subscriptions for notifications:

• urn:dece:role:retailer[:customersupport]

• urn:dece:role:lasp[:customersupport]

• urn:dece:role:accessportal[:customersupport]

• urn:dece:role:portal[:customersupport]

• urn:dece:role:dece:customersupport

18.1.3 Event Data Structures

The notification message is compact and includes information both at the message level (one for each
collection of events) and event level (repeats for each event in the collection).

This section describes the Event resource model of the EventList-type complex type.

18.1.3.1 EventList-type Definition

The Event list collection captures all class of events for which Coordinator triggers notifications. It is
conveyed in the Events element, which holds a list of individual Event elements (as defined in section
18.1.3.2).

Element Attribute Definition Value Card.

Events dece:EventList-type

 EventType Identifies the class of
event for which the
notification is triggered.

xs:string

 SubscriptionID This attribute is reserved
for future use.

xs:string 0..1

 SubscriptionC
ontext

Opaque data provided by
Node during the
subscription process.

xs:string 0…1

 MessageID Unique ID generated by
Coordinator or by
individual Notification
systems

xs:ID 0…1

Event See below. dece:EventData-type 0..n

Table 133: EventList-type Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 269

18.1.3.2 Event Type Definition

The following table describes the EventData-type complex type

Element Attribute Definition Value Card.

Event
An individual event description, that
conveys sufficient detail for a Node
to update local caches based on
what has changed.

dece:EventData-type

 ChangeDateTime
The date and time when the REST
request generating the event was
completed by the Coordinator

xs:dateTime

EventParam A URI reference to the associated
change. This may be a URN identifier
or a relative URI to the resource.

xs:anyURI 1..n

 name See defined values below. xs:string

Table 134: Event-type Definition

18.1.3.3 Name Attribute Values

The EventParam’s name attribute has 4 possible values:

• AccountID – the unique identifier for the Account

• UserID – the unique identifier for the User in associated Account

• RightsTokenID – the unique identifier for the RightsToken in associated Account

• ResourcePath – A relative path to the resource to be dereferenced. This ResourcePath does not
include the endpoint version information, allowing Nodes to prepend that based on which release of
the Coordinator the Node presently supports. The ResourcePath value also does not include any
optional query parameters

18.1.4 . Notification Payload Example

The following example includes two UserID values, both linked the target Node.

<Events EventType=”RightsLockerUpdate” MessageID="ABC123" SubscriptionContext="Optional
node supplied data">
 <Event ChangeDateTime="2015-03-17T08:22:59Z">
 <EventParam name="AccountID">
 urn:dece:accountid:org:dece:BBF31BCEEF60890AE0405B0A09344071
 </EventParam>
 <EventParam name="UserID">
 urn:dece:userid:org:dece:0000000000000000E0405B0A09344058
 </EventParam>

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 270

 <EventParam name="UserID">
 urn:dece:userid:org:dece:0000000000000000E0405B0A0934ABCD
 </EventParam>
<EventParam name="RightsTokenID">
 urn:dece:rightstokenid:org:dece:150A7D369BEA1497E0530F345A0A77D7
 </EventParam>
 <EventParam name="ResourcePath">
 /Account/urn:dece:accountid:org:dece:BBF31BCEEF60890AE0405B0A09344071/RightsToken/List
 </EventParam>
 </Event>
</Events>

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 271

19 Error Management

This section defines the error responses to Coordinator API requests.

19.1 ResponseError Definition

The ResponseError-type is used as part of each response element to describe error conditions. This
appears as an Error element. ErrorID is an integer assigned to an error that uniquely identifies the error
condition. Reason is a text description of the error in English. In the absence of more descriptive information,
this should be the title of the error, as defined in section 3.14. OriginalRequest is a string containing
information from the request.

Element Attribute Definition Value Card.

ResponseError dece:ResponseError-
type

 ErrorID HTTP error status code xs:anyURI
Reason Human-readable explanation of reason.

English being the only language used for
error reporting, the <Language> attribute
SHALL be set accordingly.

dece:LocalizedString
Abstract-type

OriginalRequest The request that generated the error. This
includes the URL but not information
provided in the original HTTP request.

xs:string

ErrorLink URL for a detailed explanation of the error
with possible self-help instructions.

xs:anyURI 0..1

Table 104: ResponseError Definition

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.
P a g e | 272

20 Appendix A: API Invocation by Role

The following table lists all the APIs in the system, divided into sections and alphabetized within each
section. The Roles that may invoke the APIs are listed across the top. The markings indicate that the Node
may invoke the API, and the annotations provide additional information about the Node’s invocation of the
API.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 273

 DE
CE

DE
CE

 C
us

to
m

er
 S

up
po

rt
†

Co
or

di
na

to
r

Co
or

di
na

to
r C

us
to

m
er

S
t†

W

eb
 P

or
ta

l

W
eb

 P
or

ta
l C

us
to

m
er

S
t†

Re

ta
ile

r

Re
ta

ile
r C

us
to

m
er

S
t†

Ac

ce
ss

 P
or

ta
l

Ac
ce

ss
 P

or
ta

l C
us

to
m

er

S
t†

Li

nk
ed

 L
AS

P

Li
nk

ed
 L

AS
P

Cu
st

om
er

S
t†

Dy

na
m

ic
 L

AS
P

Dy
na

m
ic

 L
AS

P
Cu

st
om

er

S
t†

DS

P

DS
P

Cu
st

om
er

 S
up

po
rt

†

Co
nt

en
t P

ro
vi

de
r

Co
nt

en
t P

ro
vi

de
r

C
t

 S
t†

Ba

sic
-A

cc
es

s U
se

r*

St
an

da
rd

-A
cc

es
s U

se
r*

Fu
ll-

Ac
ce

ss
 U

se
r*

AccountUserCreate n/a n/a n/a

AccountDelete 3 3 3

AccountGet

AccountUpdate 3 3 3 3 3 3

AccountMergeTest

AccountMerge

AccountMergeUndo

Di
sc

re
te

 M
ed

ia

DiscreteMediaRightCon
sume
DiscreteMediaRightCre
ate
DiscreteMediaRightDel
ete 1 1
DiscreteMediaRightFulf
ill
DiscreteMediaRightGet
10
DiscreteMediaRightList
10
DiscreteMediaRightUpd
ate 1 1

Le ga

LegacyDeviceCreate 1 1

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 274

 DE
CE

DE
CE

 C
us

to
m

er
 S

up
po

rt
†

Co
or

di
na

to
r

Co
or

di
na

to
r C

us
to

m
er

S
t†

W

eb
 P

or
ta

l

W
eb

 P
or

ta
l C

us
to

m
er

S
t†

Re

ta
ile

r

Re
ta

ile
r C

us
to

m
er

S
t†

Ac

ce
ss

 P
or

ta
l

Ac
ce

ss
 P

or
ta

l C
us

to
m

er

S
t†

Li

nk
ed

 L
AS

P

Li
nk

ed
 L

AS
P

Cu
st

om
er

S
t†

Dy

na
m

ic
 L

AS
P

Dy
na

m
ic

 L
AS

P
Cu

st
om

er

S
t†

DS

P

DS
P

Cu
st

om
er

 S
up

po
rt

†

Co
nt

en
t P

ro
vi

de
r

Co
nt

en
t P

ro
vi

de
r

C
t

 S
t†

Ba

sic
-A

cc
es

s U
se

r*

St
an

da
rd

-A
cc

es
s U

se
r*

Fu
ll-

Ac
ce

ss
 U

se
r*

LegacyDeviceDelete 1 1

LegacyDeviceGet 1 1

LegacyDeviceUpdate 1 1

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 275

 DE
CE

DE
CE

 C
us

to
m

er
 S

up
po

rt
†

Co
or

di
na

to
r

Co
or

di
na

to
r C

us
to

m
er

S
t†

W

eb
 P

or
ta

l

W
eb

 P
or

ta
l C

us
to

m
er

S
t†

Re

ta
ile

r

Re
ta

ile
r C

us
to

m
er

S
t†

Ac

ce
ss

 P
or

ta
l

Ac
ce

ss
 P

or
ta

l C
us

to
m

er

S
t†

Li

nk
ed

 L
AS

P

Li
nk

ed
 L

AS
P

Cu
st

om
er

S
t†

Dy

na
m

ic
 L

AS
P

Dy
na

m
ic

 L
AS

P
Cu

st
om

er

S
t†

DS

P

DS
P

Cu
st

om
er

 S
up

po
rt

†

Co
nt

en
t P

ro
vi

de
r

Co
nt

en
t P

ro
vi

de
r

C
t

 S
t†

Ba

sic
-A

cc
es

s U
se

r*

St
an

da
rd

-A
cc

es
s U

se
r*

Fu
ll-

Ac
ce

ss
 U

se
r*

M
et

ad
at

a

MetadataBasicList n/a n/a n/a

MetadataDigitalList n/a n/a n/a

LogicalAssetList n/a n/a n/a

LogicalAssetDelete 1 1 n/a n/a n/a
AssetMapALIDtoAPID
Get 4 4 4
AssetMapAPIDtoALID
Get 4 4 4
MapALIDtoAPIDCreat
e n/a n/a n/a
MapALIDtoAPIDUpda
te 1 1 n/a n/a n/a

BundleCreate n/a n/a n/a

BundleDelete 1 1 1 1 n/a n/a n/a

BundleGet 4 4 4

BundleUpdate 1 1 1 1 n/a n/a n/a

MetadataBasicCreate n/a n/a n/a

MetadataBasicDelete 1 1 n/a n/a n/a

MetadataBasicGet 4 4 4

MetadataBasicUpdate 1 1 n/a n/a n/a

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 276

 DE
CE

DE
CE

 C
us

to
m

er
 S

up
po

rt
†

Co
or

di
na

to
r

Co
or

di
na

to
r C

us
to

m
er

S
t†

W

eb
 P

or
ta

l

W
eb

 P
or

ta
l C

us
to

m
er

S
t†

Re

ta
ile

r

Re
ta

ile
r C

us
to

m
er

S
t†

Ac

ce
ss

 P
or

ta
l

Ac
ce

ss
 P

or
ta

l C
us

to
m

er

S
t†

Li

nk
ed

 L
AS

P

Li
nk

ed
 L

AS
P

Cu
st

om
er

S
t†

Dy

na
m

ic
 L

AS
P

Dy
na

m
ic

 L
AS

P
Cu

st
om

er

S
t†

DS

P

DS
P

Cu
st

om
er

 S
up

po
rt

†

Co
nt

en
t P

ro
vi

de
r

Co
nt

en
t P

ro
vi

de
r

C
t

 S
t†

Ba

sic
-A

cc
es

s U
se

r*

St
an

da
rd

-A
cc

es
s U

se
r*

Fu
ll-

Ac
ce

ss
 U

se
r*

MetadataDigitalCreate n/a n/a n/a

MetadataDigitalDelete 1 1 n/a n/a n/a

MetadataDigitalGet 4 4 4

MetadataDigitalUpdate 1 1 n/a n/a n/a

N
od

es

NodeCreate

NodeGet n/a n/a n/a

NodeList

NodeUpdate

NodeDelete

OrganizationGet n/a n/a n/a

Po
lic

ie
s

PolicyGet

PolicyCreate

PolicyUpdate

PolicyDelete

Ri
gh

ts
 T

ok
en

s RightsLockerDataGet
 1 1 1 1 1 1 1 1 1 1 1

RightsTokenDataGet
 1 1 1 1 1 1 1 1 11 11 1 1 1

RightsTokenCreate

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 277

 DE
CE

DE
CE

 C
us

to
m

er
 S

up
po

rt
†

Co
or

di
na

to
r

Co
or

di
na

to
r C

us
to

m
er

S
t†

W

eb
 P

or
ta

l

W
eb

 P
or

ta
l C

us
to

m
er

S
t†

Re

ta
ile

r

Re
ta

ile
r C

us
to

m
er

S
t†

Ac

ce
ss

 P
or

ta
l

Ac
ce

ss
 P

or
ta

l C
us

to
m

er

S
t†

Li

nk
ed

 L
AS

P

Li
nk

ed
 L

AS
P

Cu
st

om
er

S
t†

Dy

na
m

ic
 L

AS
P

Dy
na

m
ic

 L
AS

P
Cu

st
om

er

S
t†

DS

P

DS
P

Cu
st

om
er

 S
up

po
rt

†

Co
nt

en
t P

ro
vi

de
r

Co
nt

en
t P

ro
vi

de
r

C
t

 S
t†

Ba

sic
-A

cc
es

s U
se

r*

St
an

da
rd

-A
cc

es
s U

se
r*

Fu
ll-

Ac
ce

ss
 U

se
r*

RightsTokenListCreate

RightsTokenDelete
 1 1 1 1 1

RightsTokenGet
 1 1 1 1 1

RightsTokenUpdate
 1 1

 DownloadPlaybackLice
nseReporting

Re so

 StatusUpdate
 10 10 10 10 10 10

Se
cu

rit
y

To
ke

ns
 STS Service

(UserPassword profile)
STS Service (SAML2
profile)

St
re

am
s

StreamCreate

StreamDelete
 1 1 1 1

StreamListView
 1 1 1 1 1 1 1

StreamRenew
 1 1 1 1

StreamView
 1 1 1 1 1 1 1

 ResourcePropertyQuery

U
se

rs
 UserCreate

 3 3 3 3 3 3 3 3
UserDelete

 3 3 3 3 3 3 3 3

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 278

 DE
CE

DE
CE

 C
us

to
m

er
 S

up
po

rt
†

Co
or

di
na

to
r

Co
or

di
na

to
r C

us
to

m
er

S
t†

W

eb
 P

or
ta

l

W
eb

 P
or

ta
l C

us
to

m
er

S
t†

Re

ta
ile

r

Re
ta

ile
r C

us
to

m
er

S
t†

Ac

ce
ss

 P
or

ta
l

Ac
ce

ss
 P

or
ta

l C
us

to
m

er

S
t†

Li

nk
ed

 L
AS

P

Li
nk

ed
 L

AS
P

Cu
st

om
er

S
t†

Dy

na
m

ic
 L

AS
P

Dy
na

m
ic

 L
AS

P
Cu

st
om

er

S
t†

DS

P

DS
P

Cu
st

om
er

 S
up

po
rt

†

Co
nt

en
t P

ro
vi

de
r

Co
nt

en
t P

ro
vi

de
r

C
t

 S
t†

Ba

sic
-A

cc
es

s U
se

r*

St
an

da
rd

-A
cc

es
s U

se
r*

Fu
ll-

Ac
ce

ss
 U

se
r*

UserGet
 3 3 3 3 3 3 3 3

UserList
 3 3 3 3 3 3 3 3

UserUpdate
 3 3 3 3 3 3 3 3 9

UserValidationToke
nCreate

Notes on the API Invocation by Role Table

† The customer support role always interprets the security context at the account level.

* When composed with a Role, the entries indicate the user classification that is necessary to initiate the API request using the Node.

1 The Node may perform operations (using the API) only on objects created by the Node and by its associated customer support role (and vice versa).

2 In the absence of policies altering the API’s behavior, the response will be limited to objects created by the Node. The API’s response will vary according to
the Role.

3 A successful API invocation requires explicit consent (at the user level, at the account level, or both).

4 The API’s response varies according to the Role.

5 The API’s response depends on which Policies (if any) have been applied to the User, the object, or both.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 279

7 Nodes may manipulate the listed policy on behalf of full-access Users only. Requires the application of the Account-level EnableManageUserConsent Policy
as well as the User-level ManageUserConsent Policy.

8 Limited to the urn:dece:role:user:self and urn:dece:role:user:parent pseudo-classes

9 Limited the urn:dece:role:user:class:self pseudo-class

10 Limited to the Customer Support specialization of the Roles authorized to update that resource type. This also requires that the appropriate consent
policies are in place.

11 Refer to the API definition for specific limitations for the identified role(s).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 280

21 Appendix B: Error Codes

All of the Coordinator’s error codes are prefixed with urn:dece:errorid:org:dece:

21.1 Coordinator API Error Messages
API Error ID Reason Status

AccountDelete AccountDeleted The account has already been removed. 404
AccountDelete AccountNotActive The account is not active. 403

AccountDelete NodeUnauthorizedToActOnAccount The request is not authorized. 401
AccountDelete RequestorNotActive The requestor is not active. 403
AccountDelete RequestorNotFound The requestor was not found. 404
AccountDelete RequestorPrivilegeInsufficient You do not have permission to perform this action.

Ask a full access member of your account for help.
403

AccountDelete SecurityTokenDeleteFailed The security tokens associated with the licensed
application was not removed.

500

AccountDelete UserSAMLTokenDeleteFailed Deletion of the member's security token failed. 500
AccountGet NodeUnauthorizedToActOnAccount The request is not authorized. 401
AccountGet RequestorNotActive The requestor is not active. 403
AccountGet RequestorNotFound The requestor was not found. 404
AccountMerge AccountActiveUserCountReachedMax

Limit
The maximum number of active members allowed
has been reached.

400

AccountMerge AccountIDNotValid The account ID is not valid. 400

AccountMerge AtleastOneOfTheRequestorsMustBeR

etained
At least one of the signed-in members must be
retained.

403

AccountMerge BadRequest The request is not valid. 400
AccountMerge CountriesOfMergingAccountsDoNotM

atch
The accounts being merged must be from the same
country.

403

AccountMerge DeviceLimitExceeded The merging of these accounts would result in the
maximum number of allowed devices being
exceeded.

403

AccountMerge MergedAccountRequiresAtleastOneA
ctiveFAU

The account resulting from the merge must have at
least one active full-access member.

400

AccountMerge RequestorNotActive The requestor is not active. 403

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 281

API Error ID Reason Status
AccountMerge RequestorPrivilegeInsufficient You do not have permission to perform this action.

Ask a full access member of your account for help.
403

AccountMerge SurvivingAccountCannotBeSameAsRe
tiringAccount

The accounts being merged cannot be the same. 403

AccountMerge UserListEmpty The user list is empty. 400
AccountMerge UserListHasDuplicatedUserID The user list contains duplicate user IDs. 400
AccountMerge UserNotFound The user ID was not found. 404
AccountMerge UsersMissingInRequest The user list does not identify all users in the

accounts being merged.
400

AccountMergeTest AccountActiveUserCountReachedMax
Limit

The maximum number of active members allowed
has been reached.

400

AccountMergeTest AccountIDNotValid The account ID is not valid. 400
AccountMergeTest AtleastOneOfTheRequestorsMustBeR

etained
At least one of the signed-in members must be
retained.

403

AccountMergeTest CountriesOfMergingAccountsDoNotM
atch

The accounts being merged must be from the same
country.

403

AccountMergeTest DeviceLimitExceeded The merging of these accounts would result in the
maximum number of allowed devices being
exceeded.

403

AccountMergeTest MergedAccountRequiresAtleastOneA
ctiveFAU

The account resulting from the merge must have at
least one active full-access member.

400

AccountMergeTest RequestorNotActive The requestor is not active. 403
AccountMergeTest RequestorPrivilegeInsufficient You do not have permission to perform this action.

Ask a full access member of your account for help.
403

AccountMergeTest SurvivingAccountCannotBeSameAsRe
tiringAccount

The accounts being merged cannot be the same. 403

AccountMergeTest UserListEmpty The user list is empty. 400
AccountMergeTest UserListHasDuplicatedUserID The user list contains duplicate user IDs. 400
AccountMergeTest UserNotFound The user ID was not found. 404
AccountMergeTest UsersMissingInRequest The user list does not identify all users in the

accounts being merged.
400

AccountMergeUndo AccountIDNotValid The account ID is not valid. 400
AccountMergeUndo AccountMergeAlreadyUndone The account merge has already been undone, and

cannot be performed again.
403

AccountMergeUndo AccountNotPreviouslyMerged The account merge cannot be undone because the
identified account has not been merged with another
account.

403

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 282

API Error ID Reason Status
AccountMergeUndo MergeUndoPeriodExceeded The merge undo period has been exceeded. 403
AccountMergeUndo MergeUndoPoliciesNotMet Policies that allow a merge to be undone are not met. 403
AccountMergeUndo RequestorNotActive The requestor is not active. 403
AccountMergeUndo RequestorPrivilegeInsufficient You do not have permission to perform this action.

Ask a full access member of your account for help.
403

AccountUpdate AccountCannotBeNull The account name is required. 400
AccountUpdate AccountCountryCodeCannotBeNull The country code is required. 400
AccountUpdate AccountCountryCodeNotValid The country code is not valid. 400
AccountUpdate AccountDisplayNameNotValid The display name is not valid. 400
AccountUpdate AccountIDNotValid The account ID is not valid. 400
AccountUpdate AccountStatusNotActive The account is not active. 403
AccountUpdate CountryCannotBeChangedOnceSet The country cannot be changed. 400
AccountUpdate NodeUnauthorizedToActOnAccount The request is not authorized. 401
AccountUpdate RequestorNotActive The requestor is not active. 403
AccountUpdate RequestorNotFound The requestor was not found. 404
AccountUpdate RequestorPrivilegeInsufficient You do not have permission to perform this action.

Ask a full access member of your account for help.
403

AccountUserCreate AccountCountryCodeCannotBeNull The country code is required. 400
AccountUserCreate AccountCountryCodeNotValid The country code is not valid. 400
AccountUserCreate AccountDisplayNameNotValid The display name is not valid. 400
AccountUserCreate UserInformationRequired The User Information is Required. 400
AccountUserCreate UserListCannotHaveMoreThanOneUs

er
UserList can not have more than one user set in the
request.

403

AccountUserCreate AccountUserAddressNotValid The address is not valid. 400
AccountUserCreate AccountUserAlternateEmailNotValid The alternate email address is not valid. 400
AccountUserCreate AccountUserCountryNotValid The country is not valid. 400
AccountUserCreate AccountUserEmailAddressDuplicated The email address is a duplicate. 400
AccountUserCreate AccountUserGivenNameNotValid The given name is not valid. 400
AccountUserCreate AccountUserLanguageDuplicated The language is a duplicate. 400
AccountUserCreate AccountUserLanguageNotValid The language is not valid. 400
AccountUserCreate AccountUserMobilePhoneNumberNot

Valid
The mobile telephone number is not valid. 400

AccountUserCreate AccountUsernameRegistered The sign-in name already exists. 400
AccountUserCreate AccountUserPasswordNotValid The password is not valid. 400
AccountUserCreate AccountUserPrimaryEmailNotValid The primary email address is not valid. 400
AccountUserCreate AccountUserPrimaryLanguageNotVali

d
The primary language is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 283

API Error ID Reason Status
AccountUserCreate AccountUserSecurityAnswerNotValid The answer to the security question is not valid. 400
AccountUserCreate AccountUserSecurityQuestionDuplicat

ed
The security question is a duplicate. 400

AccountUserCreate AccountUserSecurityQuestionIDNotV
alid

The security question is not valid. 400

AccountUserCreate AccountUserSurnameNotValid The surname is not valid. 400
AccountUserCreate AccountUserTelephoneNumberNotVa

lid
The telephone number is not valid. 400

AccountUserCreate FirstUserMustBeCreatedWithFullAcce
ssPrivilege

The first member must be a full-access member. 403

AccountUserCreate PrimaryEmailConfirmationEndpointRe
quired

A confirmation endpoint is required for the member
primary email address.

400

AccountUserCreate PrimaryEmailVerifiedAttributeMustBe
True

If the member's primary email address has been
verified by the node, the setting of the
PrimaryEmailVerified attribute must be set to TRUE.

400

AccountUserCreate UserPrimaryEmailVerificationDateNot
Valid

The verification date for the member's primary email
address is not valid.

400

AccountUserCreate UserPrimaryEmailVerificationEntityNo
tValid

The node that verified the member's primary email
address is not valid.

400

AccountUserCreate UserPrimaryEmailVerificationEntityRe
quired

The node that verified the member's primary email
address must be identified.

400

AccountUserCreate UserPrimaryEmailVerificationStatusRe
quired

The verification status is required. 400

AccountUserCreate ValidPrimaryEmailVerificationDateRe
quired

The verification date for the user primary email
address is required.

400

AccountUserCreate VerificationStatusNotConsistentWithV
erifiedAttributeDeclaration

The verification status is not consistent with the
declaration of a verified attribute.

400

AssetMapALIDtoAPIDCreate ActiveApidDoesNotExist The physical asset (APID) was not found. 404
AssetMapALIDtoAPIDCreate ActiveApidInvalid The physical asset (APID) is not valid. 400
AssetMapALIDToAPIDCreate AlidNotMatchingWiththeXMLAlid The logical asset (ALID) does not match. 403
AssetMapALIDtoAPIDCreate AssetLogicalIDNotFound The logical asset (ALID) was not found. 404
AssetMapALIDtoAPIDCreate AssetProfileDoesNotExist The asset profile was not found. 404
AssetMapALIDtoAPIDCreate AssetProfileInvalid The asset profile is not valid. 400
AssetMapALIDtoAPIDCreate DuplicateAPIDNotAllowed The APIDs are duplicates. 400
AssetMapALIDToAPIDCreate LogicalAssetAlreadyExist The logical asset already exists. 409
AssetMapALIDToAPIDCreate MdNodeIdDiffrentFromCreateReques

t
The node did not create the resource. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 284

API Error ID Reason Status
AssetMapALIDToAPIDCreate MediaProfileNotMatchingWiththeXM

LMediaProfile
The media profile does not match. 403

AssetMapALIDtoAPIDCreate RecalledAPIDDoesNotExist The recalled physical asset (APID) was not found. 404
AssetMapALIDtoAPIDCreate RecalledAPIDInvalid The replaced physical asset (APID) is not valid. 400
AssetMapALIDtoAPIDCreate ReplacedAPIDDoesNotExist The replaced physical asset (APID) was not found. 404
AssetMapALIDtoAPIDCreate ReplacedAPIDInvalid The replaced physical asset (APID)is not valid 400
AssetMapALIDToAPIDCreate RestrictionTypeDoesNotExist The supplied restriction type was not found. 404
AssetMapALIDtoAPIDCreate RestrictionTypeInvalid The identified restriction type is invalid 400
AssetMapALIDtoAPIDGet AssetIdentifierNotValid The physical asset (APID) or the logical asset (ALID) is

not valid.
400

AssetMapALIDtoAPIDGet AssetLogicalIDNotFound The logical asset (ALID) was not found. 404
AssetMapALIDtoAPIDGet AssetPhysicalIDNotFound The physical asset (APID) was not found. 404
AssetMapALIDtoAPIDGet AssetProfileInvalid The asset profile is not valid. 400
BundleCreate BundleIDNotValid The bundle is not valid. 400
BundleDelete BundleIDNotValid The bundle is not valid. 400
BundleGet BundleIDNotValid The bundle is not valid. 400
BundleResourceStatusUpdate BundleIDNotValid The bundle is not valid. 400
Common AccountIdUnmatched The account ID does not match. 403
Common AccountNotFound The account ID was not found. 404
Common AccountNotActive The identified account is not active. 400
Common AccountUsernameNotValid The sign-in name is not valid. 400
Common AdminAccessDenied Administrative access has been denied. 401
Common AdultContentNotAllowed The member does not have permission to access this

content because of its rating.
403

Common APIDInvalid The physical asset (APID) is not valid. 400
Common AssetLogicalIDNotValid The logical asset (ALID) is not valid. 400
Common AuthnRequestNotValid The authentication request not valid. 400
Common ContactIdInvalid The contact ID is not valid. 400
Common ContentIDNotActive The content is not active. 403
Common ContentIDNotFound The content ID was not found. 404
Common ContentIDNotValid The content is not valid. 400
Common DiscreteMediaFulfillmentMethodInval

id
The discrete media fulfillment method is not valid. 400

Common EnableUserDataUsageConsentRequire
d

The setting of the EnableUserDataUsageConsent
policy prevents the requested action from being
completed.

403

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 285

API Error ID Reason Status
Common Forbidden The requesting node is not allowed to perform this

request.
403

Common InternalServerError An internal server error occurred. 500
Common InternalServerErrorRetry Please submit the request again. 500
Common InvalidBaseLocationDelegationName The base location delegation name is invalid 400
Common InvalidBaseLocationDelegationNameS

erver
The base location delegation name server is invalid 400

Common InvalidLogoResourceWidthOrHeight The logo’s resource width or height is invalid 400
Common InvalidScheme The scheme is not valid. 400
Common InvalidSSID The schema-specific identifier is not valid. 400
Common InvocationPathHasNonEncodedParam

eters
The parameters in the invocation path must be
escape-encoded.

400

Common InvocationTargetException The method parameter types are not valid. 400
Common LockerViewAllConsentRequired The setting of the LockerViewAllConsent policy

prevents the requested action from being completed.
403

Common ManageAccountConsentRequired The setting of the ManageAccountConsent policy
prevents the requested action from being completed.

403

Common ManageUserConsentRequired The setting of the ManageUserConsent policy
prevents the requested action from being completed.

403

Common MandatoryFieldCannotBeNullOrEmpt
y

This field cannot be empty or null. 400

Common MethodNotSupported The requested method is not supported. 405
Common NodeIdInvalid The node ID is not valid. 400
Common NodeIdUnmatched The node ID does not match. 400
Common NodeNotActive The node is not active. 403
Common NodeNotFound The node ID was not found. 404
Common NotFound The requested resource was not found. 404
Common RatingPolicyExists The member does not have permission to access this

content because of its rating.
403

Common RightsTokenIDNotValid The rights token ID is not valid. 400
Common RoleInvalid The API call is not authorized. 403

Common SaxParserException DECE parser exception. 400
Common Unauthorized The request is not authorized. 401
Common UnexpectedXmlForbidden The URL does not match. 403
Common UnratedContentBlocked The member does not have permission to access this

content because it is unrated.
403

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 286

API Error ID Reason Status
Common UserDataUsageConsentRequired The setting of the UserDataUsageConsent policy

prevents the requested action from being completed.
403

Common UserIdInvalid The user ID is not valid. 400
Common UserIdUnmatched The user ID does not match. 403
Common UserLinkConsentRequired The setting of the UserLinkConsent policy prevents

the requested action from being completed.
403

Common UserNotActive The member is not active. 403
Common UserNotFound The user ID was not found. 404
ContactCreate ConfirmationEndPointNotValid The confirmation end point is not valid. 400
ContactCreate ContactAlternateEmailInvalid The contact's alternate email is not valid. 400
ContactCreate ContactGivenNameInvalid The contact's given name is not valid. 400
ContactCreate ContactMobilephoneNumberInvalid The contact's mobile phone number is not valid. 400
ContactCreate ContactPrimaryEmailInvalid The contact's primary email is not valid. 400
ContactCreate ContactSurnameInvalid The contact surname is not valid. 400
ContactCreate ContactTelephoneNumberInvalid The contact's telephone number is not valid. 400
ContactCreate LocalityNotValid The locality is not valid. 400
ContactCreate PostalAddressNotValid The postal address is not valid. 400
ContactCreate PostalCodeNotValid The postal code is not valid. 400
ContactCreate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

ContactCreate StateOrProvinceNotValid The state or province is not valid. 400
ContactDelete ContactDeleteConflict The last remaining contact for a node or organization

cannot be removed.
401

ContactDelete ContactDoesNotExist The contact was not found. 404
ContactGet ContactNotFound The contact was not found. 404
ContactResourceStatusUpdate BadGateWay The request cannot be fulfilled because of a server

error..
502

ContactResourceStatusUpdate ContactNotFound The contact was not found. 404
ContactResourceStatusUpdate ResourceAlreadyinSameStatus The resource is already in the requested status. 409
ContactResourceStatusUpdate ResourceCurrentStatusValueRequired The resource's current status is required. 400
ContactResourceStatusUpdate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

ContactUpdate ConfirmationEndPointNotValid The confirmation end point is not valid. 400
ContactUpdate ContactAlreadyExists The contact already exists. 409
ContactUpdate ContactAlternateEmailInvalid The contact's alternate email is not valid. 400
ContactUpdate ContactDoesNotExist The contact was not found. 404
ContactUpdate ContactGivenNameInvalid The contact's given name is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 287

API Error ID Reason Status
ContactUpdate ContactMobilephoneNumberInvalid The contact's mobile phone number is not valid. 400
ContactUpdate ContactNotActive The contact is not active. 404
ContactUpdate ContactPrimaryEmailInvalid The contact's primary email is not valid. 400
ContactUpdate ContactSurnameInvalid The contact surname is not valid. 400
ContactUpdate ContactTelephoneNumberInvalid The contact's telephone number is not valid. 400
ContactUpdate LocalityNotValid The locality is not valid. 400
ContactUpdate PostalAddressNotValid The postal address is not valid. 400
ContactUpdate PostalCodeNotValid The postal code is not valid. 400
ContactUpdate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

ContactUpdate StateOrProvinceNotValid The state or province is not valid. 400
CreateAttestation ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

DeleteDeviceAuthTokenDeviceStri
ng

DeviceAuthHandleIDNotValid The device authorization token ID is not valid. 400

DigitalAssetCreate ApidNotMatchingWiththeXMLApid The physical asset (APID) does not match. 403
DigitalAssetCreate BitrateMaxValueIsRequired The maximum value for the bitrate is required. 400
DigitalAssetCreate CodecTypeIsRequired The codec type is required. 400
DigitalAssetCreate InvalidLanguage The language is not valid. 400
DigitalAssetCreate MdDigitalMetadataAlreadyExist The digital metadata already exists. 409
DigitalAssetCreate MdDigitalRecordDoesNotExist The digital metadata was not found. 404
DigitalAssetCreate MdNodeIdDiffrentFromCreateReques

t
The node did not create the resource. 400

DigitalAssetCreate ResourceStatusElementNotAllowed The resource status element is not allowed. 403
DigitalAssetCreate UpdateNumIsInvalid The version number is not valid. 400
DigitalAssetCreate UpdateNumIsRequired The version number is required. 400
DigitalAssetDelete ApidRefenceToAssetMapLpIsActive The physical asset (APID) is referred to by an active

logical asset (ALID).
409

DigitalAssetDelete MdDigitalRecordDoesNotExist The digital metadata was not found. 404
DigitalAssetDelete MdNodeIdDiffrentFromCreateReques

t
The node did not create the resource. 400

DigitalAssetDelete ResourceStatusTransitionRequestedN
otAllowed

The requested status transition is not allowed for the
resource.

403

DigitalAssetGet MdDigitalRecordDoesNotExist The digital metadata was not found. 404
DigitalAssetResourceStatusUpdate BadRequest The request is not valid. 400
DigitalAssetResourceStatusUpdate MdDigitalRecordDoesNotExist The digital metadata was not found. 404
DigitalAssetResourceStatusUpdate ResourceAlreadyinSameStatus The resource is already in the requested status. 409

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 288

API Error ID Reason Status
DigitalAssetResourceStatusUpdate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

DigitalAssetUpdate CodecTypeIsRequired The codec type is required. 400
DigitalAssetUpdate InvalidLanguage The language is not valid. 400
DigitalAssetUpdate UpdateNumIsInvalid The version number is not valid. 400
DigitalAssetUpdate UpdateNumIsRequired The version number is required. 400
DiscreteMediaRightConsume DiscreteMediaFulfillmentMethodDoe

sNotExist
The discrete media fulfillment method was not
found.

404

DiscreteMediaRightConsume DiscreteMediaFulfillmentMethodNot
Valid

The discrete media fulfillment method is not valid. 400

DiscreteMediaRightConsume DiscreteMediaFulfillmentMethodNot
ValidForRightsToken

The discrete media fulfillment method is not valid for
the rights token.

409

DiscreteMediaRightConsume DiscreteMediaRightExpireLimitReache
d

The discrete media right has expired. 403

DiscreteMediaRightConsume DiscreteMediaRightRemainingCountR
estriction

Insufficient discrete media rights remain. 409

DiscreteMediaRightConsume MediaProfileNotValid The media profile is not valid. 400
DiscreteMediaRightConsume MediaProfileNotValidForRightsToken The media profile is not valid for the rights token. 409
DiscreteMediaRightConsume PurchaseProfileNotFound The purchase profile was not found. 404
DiscreteMediaRightConsume RightsTokenNotActive The rights token is not active. 403
DiscreteMediaRightConsume RightsTokenNotFound The rights token was not found. 404
DiscreteMediaRightCreate AuthorizedFulfillmentMethodNotVali

d
The authorized fulfillment method is not valid. 400

DiscreteMediaRightCreate DiscreteMediaLimitExceeded The maximum number of discrete media rights
allowed has been exceeded.

400

DiscreteMediaRightCreate DuplicateAuthorizedFulfillmentMetho
dsNotAllowed

The authorized fulfillment methods are not allowed. 400

DiscreteMediaRightCreate MediaProfileNotValid The media profile is not valid. 400
DiscreteMediaRightCreate MediaProfileNotValidForRightsToken The media profile is not valid for the rights token. 409
DiscreteMediaRightCreate PurchaseProfileNotFound The purchase profile was not found. 404
DiscreteMediaRightCreate ResourceStatusElementNotAllowed The resource status element is not allowed. 403
DiscreteMediaRightCreate RightsTokenNotActive The rights token is not active. 403
DiscreteMediaRightCreate RightsTokenNotFound The rights token was not found. 404
DiscreteMediaRightCreate UserIdUnmatched The user ID does not match. 403
DiscreteMediaRightDelete DiscreteMediaRightAlreadyConsumed

OrLeased
The discrete media right has been consumed or
leased.

400

DiscreteMediaRightDelete DiscreteMediaRightIDNotValid The discrete media right ID is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 289

API Error ID Reason Status
DiscreteMediaRightDelete DiscreteMediaRightNotFound The discrete media right ID was not found. 404
DiscreteMediaRightDelete DiscreteMediaRightOwnerMismatch The discrete media right's owner does not match. 403
DiscreteMediaRightDelete RightsTokenNotActive The rights token is not active. 403
DiscreteMediaRightDelete RightsTokenNotFound The rights token was not found. 404
DiscreteMediaRightGet DiscreteMediaRightIDNotValid The discrete media right ID is not valid. 400
DiscreteMediaRightGet DiscreteMediaRightNotActive The discrete media right is not active. 403
DiscreteMediaRightGet DiscreteMediaRightNotFound The discrete media right ID was not found. 404
DiscreteMediaRightGet RightsTokenNotActive The rights token is not active. 403
DiscreteMediaRightGet RightsTokenNotFound The rights token was not found. 404
DiscreteMediaRightListGet RightsTokenNotActive The rights token is not active. 403
DiscreteMediaRightListGet RightsTokenNotFound The rights token was not found. 404
DiscreteMediaRightUpdate AuthorizedFulfillmentMethodNotVali

d
The authorized fulfillment method is not valid. 400

DiscreteMediaRightUpdate DiscreteMediaRightAlreadyConsumed
OrLeased

The discrete media right has been consumed or
leased.

400

DiscreteMediaRightUpdate DiscreteMediaRightIDNotValid The discrete media right ID is not valid. 400
DiscreteMediaRightUpdate DiscreteMediaRightNotFound The discrete media right ID was not found. 404
DiscreteMediaRightUpdate DiscreteMediaRightOwnerMismatch The discrete media right's owner does not match. 403
DiscreteMediaRightUpdate DiscreteMediaStateNotValid The status of the discrete media right is not valid. 400
DiscreteMediaRightUpdate DiscreteMediaStateShouldBeAvailable The discrete media right is not available. 400
DiscreteMediaRightUpdate DuplicateAuthorizedFulfillmentMetho

dsNotAllowed
The authorized fulfillment methods are not allowed. 400

DiscreteMediaRightUpdate MediaProfileNotValid The media profile is not valid. 400
DiscreteMediaRightUpdate MediaProfileNotValidForRightsToken The media profile is not valid for the rights token. 409
DiscreteMediaRightUpdate PurchaseProfileNotFound The purchase profile was not found. 404

DiscreteMediaRightUpdate RightsTokenNotActive The rights token is not active. 403
DiscreteMediaRightUpdate RightsTokenNotFound The rights token was not found. 404
DiscreteMediaRightUpdate UserIdUnmatched The user ID does not match. 403
LegacyDeviceCreate AccountDeviceCountExceedMaxLimit The maximum number of devices allowed has been

reached.
400

LegacyDeviceCreate AccountIDNotValid The account ID is not valid. 400
LegacyDeviceCreate DeviceAlreadyExist The device already exists. 409
LegacyDeviceCreate DeviceCountExceedMaxLimit The maximum number of devices allowed has been

exceeded.
401

LegacyDeviceCreate DeviceIdNotMatchingWiththeXMLDev
iceID

The device ID does not match. 403

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 290

API Error ID Reason Status
LegacyDeviceCreate DeviceNodeIdDiffrentFromCreateReq

uest
The node ID identifies a node that is different from
the node that created the device.

403

LegacyDeviceCreate DeviceRecordDoesNotExist The device was not found. 404
LegacyDeviceCreate InvalidDeviceId The device ID is not valid. 404
LegacyDeviceCreate InvalidLegacyDeviceImageUrl The URL for the legacy device's image is not valid. 400
LegacyDeviceCreate NonLegacyDeviceNotSupported The non-legacy device is not supported. 409
LegacyDeviceCreate ReachedMaxRegisteredLegacyDevice The maximum number of devices allowed has been

reached.
409

LegacyDeviceCreate ResourceStatusElementNotAllowed The resource status element is not allowed. 403
LegacyDeviceDelete DeviceNodeIdDiffrentFromCreateReq

uest
The node ID identifies a node that is different from
the node that created the device.

403

LegacyDeviceDelete DeviceRecordDoesNotExist The device was not found. 404
LegacyDeviceDelete InvalidDeviceId The device ID is not valid. 404
LegacyDeviceUpdate NonLegacyDeviceNotSupported The non-legacy device is not supported. 409
LegacyDeviceUpdate ResourceStatusElementNotAllowed The resource status element is not allowed. 403
LogicalAssetDelete LogicalAssetRightsReferenceActive The Logical ID is referred to by an active rights token. 409
LogicalAssetDelete LogicalAssetBundleReferenceActive The Logical ID is referred to by an active Bundle 409
LogicalAssetDelete AssetLogicalIDNotValid The logical asset is not valid. 400
LogicalAssetDelete AssetLogicalIDNotFound The logical asset is not found 404
LogicalAssetDelete Request:MdNodeIdDiffrentFromCreat

eRequest
The node did not create the resource. 400

LogicalAssetDelete MediaProfileNotValid The media profile is not valid. 400
MDBasicCreate AccountCountryCodeNotValid The country code is not valid. 400
MDBasicCreate ArtReferenceImageUrlCannotBeNull A URL for the art reference is required. 400
MDBasicCreate ArtReferenceRequired An art reference is required 400
MDBasicCreate ContentIdNotMatchingWiththeXMLC

ontentId
The content ID does not match. 403

MDBasicCreate DuplicateContentRating The content rating is a duplicate. 400
MDBasicCreate DuplicateLanguageForDisplayName The language of the display name is a duplicate. 400
MDBasicCreate DuplicateLanguageForLocalizedInfo The language of the localized information is a

duplicate.
400

MDBasicCreate DuplicateLanguageForSortName The language of the sort name is a duplicate. 400
MDBasicCreate DuplicateParent The content parent ID is a duplicate. 400
MDBasicCreate InvalidArtReferenceImageFormat The format of the image is not valid. 400
MDBasicCreate InvalidArtReferenceImageUrl The image's URL is not valid. 400
MDBasicCreate InvalidContentParentID The content parent ID is not valid. 400
MDBasicCreate InvalidDisplayIndicator The display indicator is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 291

API Error ID Reason Status
MDBasicCreate InvalidGenre One or more of the genres is not valid. 400
MDBasicCreate InvalidKeyword One or more of the keywords is not valid. 400
MDBasicCreate InvalidLanguage The language is not valid. 400
MDBasicCreate InvalidParentID The parent ID is not valid. 400
MDBasicCreate InvalidPeopleLocalNameIdentifier The people local namespace/identifier combination is

not valid.
400

MDBasicCreate InvalidPeopleNameIdentifier The people namespace/identifier combination is not
valid.

400

MDBasicCreate InvalidReleaseHistory The release history is a duplicate. 400
MDBasicCreate InvalidResolution The resolution is not valid. 400
MDBasicCreate InvalidResolutionWidthHeight The resolution width and height is not valid. 400
MDBasicCreate InvalidURIResolution The URI is not valid. 400
MDBasicCreate InvalidWorkType The work type is not valid. 400
MDBasicCreate MdBasicMetadataAlreadyExist The basic metadata already exists. 409
MDBasicCreate MdNodeIdDiffrentFromCreateReques

t
The node did not create the resource. 400

MDBasicCreate MultipleDefaultLanguageForLocalized
Info

Only one default language is allowed for localized
info.

400

MDBasicCreate ReleaseHistoryDateCannotBeNull The release history date is required. 400
MDBasicCreate ReleaseYearCannotBeNull The release year is required. 400
MDBasicCreate ResolutionCannotBeNull The resolution is required. 400

MDBasicCreate SequenceInfoAndParentInfoRequired The sequence information and parent information

elements are required.
400

MDBasicCreate UpdateNumIsInvalid The version number is not valid. 400
MDBasicCreate UpdateNumIsRequired The version number is required. 400
MDBasicDelete MdBasicAssetMapReferenceActive The content ID is referred to by an active asset map. 409
MDBasicDelete MdBasicBundleReferenceActive The content ID is referred to by an active bundle. 409
MDBasicDelete MdBasicDigitalReferenceActive The content ID is referred to by an active digital

asset.
409

MDBasicDelete MdBasicRightsTokenReferenceActive The content ID is referred to by an active rights
token.

409

MDBasicDelete MdNodeIdDiffrentFromCreateReques
t

The node did not create the resource. 400

MDBasicDelete ResourceStatusTransitionRequestedN
otAllowed

The requested status transition is not allowed for the
resource.

403

MDBasicGet PostProcessingFailed Post-processing of the image failed. 409

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 292

API Error ID Reason Status
MDBasicGet PostProcessingNotCompleted Post-processing of the image was not completed. 404
MDBasicResourceStatusUpdate BadRequest The request is not valid. 400
MDBasicResourceStatusUpdate ResourceAlreadyinSameStatus The resource is already in the requested status. 409
MDBasicResourceStatusUpdate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

MDBasicUpdate AccountCountryCodeNotValid The country code is not valid. 400
MDBasicUpdate ArtReferenceImageUrlCannotBeNull A URL for the art reference is required. 400
MDBasicUpdate ArtReferenceRequired An art reference is required 400
MDBasicUpdate DuplicateContentRating The content rating is a duplicate. 400
MDBasicUpdate DuplicateLanguageForDisplayName The language of the display name is a duplicate. 400
MDBasicUpdate DuplicateLanguageForLocalizedInfo The language of the localized information is a

duplicate.
400

MDBasicUpdate DuplicateLanguageForSortName The language of the sort name is a duplicate. 400
MDBasicUpdate DuplicateParent The content parent ID is a duplicate. 400
MDBasicUpdate InvalidArtReferenceImageFormat The format of the image is not valid. 400
MDBasicUpdate InvalidArtReferenceImageUrl The image's URL is not valid. 400
MDBasicUpdate InvalidContentParentID The content parent ID is not valid. 400
MDBasicUpdate InvalidContentRating The content rating is not valid. 400
MDBasicUpdate InvalidGenre One or more of the genres is not valid. 400
MDBasicUpdate InvalidKeyword One or more of the keywords is not valid. 400
MDBasicUpdate InvalidLanguage The language is not valid. 400
MDBasicUpdate InvalidParentID The parent ID is not valid. 400
MDBasicUpdate InvalidPeopleLocalNameIdentifier The people local namespace/identifier combination is

not valid.
400

MDBasicUpdate InvalidPeopleNameIdentifier The people namespace/identifier combination is not
valid.

400

MDBasicUpdate InvalidReleaseHistory The release history is a duplicate. 400
MDBasicUpdate InvalidResolution The resolution is not valid. 400
MDBasicUpdate InvalidResolutionWidthHeight The resolution width and height is not valid. 400
MDBasicUpdate InvalidURIResolution The URI is not valid. 400
MDBasicUpdate InvalidWorkType The work type is not valid. 400
MDBasicUpdate MdBasicMetadataAlreadyExist The basic metadata already exists. 409
MDBasicUpdate MultipleDefaultLanguageForLocalized

Info
Only one default language is allowed for localized
info.

400

MDBasicUpdate ReleaseHistoryDateCannotBeNull The release history date is required. 400
MDBasicUpdate ReleaseYearCannotBeNull The release year is required. 400
MDBasicUpdate ResolutionCannotBeNull The resolution is required. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 293

API Error ID Reason Status
MDBasicUpdate SequenceInfoAndParentInfoRequired The sequence information and parent information

elements are required.
400

MDBasicUpdate UpdateNumIsInvalid The version number is not valid. 400
MDBasicUpdate UpdateNumIsRequired The version number is required. 400
MDBundleCreate AssetLogicalIDNotFound The logical asset (ALID) was not found. 404
MDBundleCreate BundleAlreadyExist The bundle already exists. 409
MDBundleCreate BundleIDNotFound The bundle ID was not found. 404
MDBundleCreate BundleIdNotMatchingWiththeXMLBu

ndleId
The bundle ID does not match. 403

MDBundleCreate DuplicateContentId The content ID is a duplicate. 400
MDBundleCreate InvalidArtReferenceImageFormat The format of the image is not valid. 400
MDBundleCreate InvalidArtReferenceImageUrl The image's URL is not valid. 400
MDBundleCreate InvalidContentRating The content rating is not valid. 400
MDBundleCreate InvalidDisplayIndicator The display indicator is not valid. 400
MDBundleCreate InvalidLanguage The language is not valid. 400
MDBundleCreate InvalidPeopleLocalNameIdentifier The people local namespace/identifier combination is

not valid.
400

MDBundleCreate InvalidReleaseHistory The release history is a duplicate. 400
MDBundleCreate InvalidResolution The resolution is not valid. 400
MDBundleCreate InvalidURIResolution The URI is not valid. 400
MDBundleCreate InvalidWorkType The work type is not valid. 400
MDBundleCreate MdNodeIdDiffrentFromCreateReques

t
The node did not create the resource. 400

MDBundleCreate MultipleDefaultLanguageForLocalized
Info

Only one default language is allowed for localized
info.

400

MDBundleDelete BundleIDNotFound The bundle ID was not found. 404
MDBundleDelete BundleLinkedWithRightsTokenCannot

BeDeleted
The bundle cannot be removed. 409

MDBundleDelete ResourceStatusTransitionRequestedN
otAllowed

The requested status transition is not allowed for the
resource.

403

MDBundleGet BundleIDNotFound The bundle ID was not found. 404
MDBundleGet PostProcessingFailed Post-processing of the image failed. 409
MDBundleGet PostProcessingNotCompleted Post-processing of the image was not completed. 404
MdBundleResourceStatusUpdate BadRequest The request is not valid. 400
MdBundleResourceStatusUpdate BundleIDNotFound The bundle ID was not found. 404
MdBundleResourceStatusUpdate ResourceAlreadyinSameStatus The resource is already in the requested status. 409

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 294

API Error ID Reason Status
MdBundleResourceStatusUpdate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

MDBundleUpdate AssetLogicalIDNotFound The logical asset (ALID) was not found. 404
MDBundleUpdate BundleIDNotFound The bundle ID was not found. 404
MDBundleUpdate DuplicateContentId The content ID is a duplicate. 400
MDBundleUpdate InvalidLanguage The language is not valid. 400
NodeCreate AddressDoesNotExist The address was not found. 404
NodeCreate ContactDoesNotExist The contact was not found. 404
NodeCreate DeceProtocolVersionNotProper The DECE protocol version is not valid. 400
NodeCreate DisplayNameRequired The display name is required. 400
NodeCreate InvalidLogoResourceUrl The URL for the logo is not valid. 400
NodeCreate InvalidMediaDownloadLocBase The base media download location is invalid. 400
NodeCreate LocalityNotValid The locality is not valid. 400
NodeCreate NodeAlreadyExists The node already exists. 409
NodeCreate NodeDeviceManagementURLNotValid The device management URL is not valid. 400
NodeCreate NodeProxyOrgIdDoesNotExist The node's proxy organization does not exist. 404
NodeCreate NodeRoleInvalid The node/role is not valid. 401
NodeCreate OrgIdInvalid The organization ID is not valid. 400
NodeCreate OrgIdRequired An organization ID is required. 400
NodeCreate OrgIdUnmatched The organization ID does not match. 400
NodeCreate OrgNotActive The organization is not active. 404
NodeCreate OrgNotFound The organization was not found. 404
NodeCreate PostalAddressNotValid The postal address is not valid. 400
NodeCreate PostalCodeNotValid The postal code is not valid. 400
NodeCreate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

NodeCreate StateOrProvinceNotValid The state or province is not valid. 400
NodeCreate StatusInvalid The status is not valid. 400
NodeDelete NodeIDRequired The node ID is required. 400
NodeDelete OrgIdInvalid The organization ID is not valid. 400
NodeDelete OrgIdRequired An organization ID is required. 400
NodeGet NodeIDRequired The node ID is required. 400
NodeGet OrgIdInvalid The organization ID is not valid. 400
NodeGet OrgNotFound The organization was not found. 404
NodeGet OrgNotFound The organization was not found. 404
NodeList OrgIdInvalid The organization ID is not valid. 400
NodeResourceStatusUpdate AccountStatusNotValid The account status is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 295

API Error ID Reason Status
NodeResourceStatusUpdate NodeUnauthorizedToActOnAccount The request is not authorized. 401
NodeResourceStatusUpdate OrgIdUnmatched The organization ID does not match. 400
NodeResourceStatusUpdate OrgNotFound The organization was not found. 404
NodeResourceStatusUpdate RequestorPrivilegeInsufficient You do not have permission to perform this action.

Ask a full access member of your account for help.
403

NodeResourceStatusUpdate ResourceAlreadyInRequestedStatus The resource is already in the requested status. 400
NodeResourceStatusUpdate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

NodeResourceStatusUpdate StatusInvalid The status is not valid. 400
NodeUpdate AddressDoesNotExist The address was not found. 404
NodeUpdate ContactDoesNotExist The contact was not found. 404
NodeUpdate DeceProtocolVersionNotProper The DECE protocol version is not valid. 400
NodeUpdate InvalidLogoResourceUrl The URL for the logo is not valid. 400
NodeUpdate InvalidMediaDownloadLocBase The base media download location is invalid. 400
NodeUpdate LocalityNotValid The locality is not valid. 400
NodeUpdate NodeAlreadyExists The node already exists. 409
NodeUpdate NodeDeviceManagementURLNotValid The device management URL is not valid. 400
NodeUpdate NodeDoesNotBelongsToOrg The node does not belong to the organization. 400
NodeUpdate NodeIDRequired The node ID is required. 400
NodeUpdate NodeProxyOrgIdDoesNotExist The node's proxy organization does not exist. 404
NodeUpdate NodeRoleInvalid The node/role is not valid. 401
NodeUpdate OrgIdInvalid The organization ID is not valid. 400
NodeUpdate OrgIdRequired An organization ID is required. 400
NodeUpdate OrgIdUnmatched The organization ID does not match. 400
NodeUpdate PostalAddressNotValid The postal address is not valid. 400
NodeUpdate PostalCodeNotValid The postal code is not valid. 400
NodeUpdate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

NodeUpdate StateOrProvinceNotValid The state or province is not valid. 400
NodeUpdate StatusInvalid The status is not valid. 400
OrgCreate AddressDoesNotExist The address was not found. 404
OrgCreate AppAuthTokenDataOrValueInvalid The authorization token contains invalid information. 400
OrgCreate AppAuthTokenIdInvalid The authorization token is not valid. 400
OrgCreate ContactDoesNotExist The contact was not found. 404
OrgCreate ContactPrimaryEmailInvalid The contact's primary email is not valid. 400
OrgCreate ContactSurnameInvalid The contact surname is not valid. 400
OrgCreate ContactTelephoneNumberInvalid The contact's telephone number is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 296

API Error ID Reason Status
OrgCreate DisplayNameLanguageNotValid The language of the display name is not valid. 400
OrgCreate FieldExceedsMaxLength The number of characters in the field exceeds the

maximum number allowed.
400

OrgCreate OrgAlreadyExists The organization already exists. 409
OrgCreate OrganizationSortNameInvalid The organization's sort name is not valid. 400
OrgCreate OrganizationWebsiteInvalid The organization's web site is not valid. 400
OrgCreate OrgIdInvalid The organization ID is not valid. 400
OrgCreate OrgNotActive The organization is not active. 404
OrgCreate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

OrgDelete OrgHasActiveNodes The organization has associated active nodes. 401
OrgDelete OrgIdInvalid The organization ID is not valid. 400
OrgDelete OrgIdRequired An organization ID is required. 400
OrganizationGet OrgIdRequired An organization ID is required. 400
OrganizationGet OrgNotFound The organization was not found. 404
OrgResourceStatusUpdate OrgHasActiveNodes The organization has associated active nodes. 401
OrgResourceStatusUpdate ResourceAlreadyinSameStatus The resource is already in the requested status. 409
OrgResoureStatusUpdate OrgNotFound The organization was not found. 404
OrgUpdate AddressDoesNotExist The address was not found. 404
OrgUpdate AppAuthTokenDataOrValueInvalid The authorization token contains invalid information. 400
OrgUpdate AppAuthTokenIdInvalid The authorization token is not valid. 400
OrgUpdate ContactDoesNotExist The contact was not found. 404
OrgUpdate ContactPrimaryEmailInvalid The contact's primary email is not valid. 400
OrgUpdate ContactSurnameInvalid The contact surname is not valid. 400
OrgUpdate ContactTelephoneNumberInvalid The contact's telephone number is not valid. 400
OrgUpdate DisplayNameLanguageNotValid The language of the display name is not valid. 400
OrgUpdate FieldExceedsMaxLength The number of characters in the field exceeds the

maximum number allowed.
400

OrgUpdate OrgAlreadyExists The organization already exists. 409
OrgUpdate OrganizationSortNameInvalid The organization's sort name is not valid. 400
OrgUpdate OrganizationWebsiteInvalid The organization's web site is not valid. 400
OrgUpdate OrgIdInvalid The organization ID is not valid. 400
OrgUpdate OrgIdRequired An organization ID is required. 400
OrgUpdate OrgNotActive The organization is not active. 404
OrgUpdate OrgNotFound The organization was not found. 404
OrgUpdate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 297

API Error ID Reason Status
PolicyCreate AccountIDNotValid The account ID is not valid. 400
PolicyCreate AccountStatusNotValid The account status is not valid. 400
PolicyCreate CLGNotAttested The underage member does not have a connected

legal guardian (CLG).
403

PolicyCreate DuplicatePolicyCannotBeAdded The requested policy already exists. 403
PolicyCreate EnableManageUserConsentRequired The setting of the EnableManageUserConsent policy

prevents the requested action from being completed.
403

PolicyCreate IncomingPoliciesOrExistingPoliciesAre
Invalid

The requested policies or those already applied are
not valid.

400

PolicyCreate LatestTOUNotAccepted The latest version of the Terms of Use has not been
accepted.

403

PolicyCreate PolicyActorInvalid The policy actor is not valid. 400
PolicyCreate PolicyClassInvalid The policy class is not valid. 400
PolicyCreate PolicyClassNotValid The policy class is not valid 400
PolicyCreate PolicyCreatorInvalid The policy creator is not valid. 400
PolicyCreate PolicyCreatorNotFound The policy creator was not found. 404
PolicyCreate PolicyIdNotValid The policy ID is not valid. 400
PolicyCreate PolicyListInvalid The policy list is not valid. 400
PolicyCreate PolicyRequestingEntityInvalid The policy requesting entity is not valid. 400
PolicyCreate PolicyRequestingEntityInvalidForPolic

yClass
The policy requesting entity is not valid for the policy
class.

400

PolicyCreate PolicyRequestingEntityNotFound The policy requesting entity is not valid. 404
PolicyCreate PolicyResourceInvalid The policy resource is not valid. 400
PolicyCreate PolicyResourceInvalidForPolicyClass The policy resource is not valid for the policy class. 400
PolicyCreate PolicyResourceNotFound The policy resource was not found. 404
PolicyCreate PolicyResourceStatusRequired A policy resource status is required. 400
PolicyCreate PolicyStatusNotValid The policy's status is not valid. 400

PolicyCreate TOUNotAccepted The Terms of Use policy was not accepted. 403
PolicyCreate UserStatusNotValid The member's status is not valid. 400
PolicyDelete AccountIDNotValid The account ID is not valid. 400
PolicyDelete EnableManageUserConsentCannotBe

Deleted
The EnableManageUserConsent policy cannot be
removed.

400

PolicyDelete EnableManageUserConsentRequired The setting of the EnableManageUserConsent policy
prevents the requested action from being completed.

403

PolicyDelete EnableUserDataUsageConsentCannot
BeDeleted

The EnableUserDataUsageConsent policy cannot be
removed.

400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 298

API Error ID Reason Status
PolicyDelete PolicyIdNotValid The policy ID is not valid. 400
PolicyDelete PolicyInfoInURLNotValid The policy information in the URL is not valid. 400
PolicyDelete PolicyNotFound The policy was not found. 404
PolicyDelete TOUCannotBeDeleted The Terms of Use policy cannot be removed. 403
PolicyDelete TOUNotAccepted The Terms of Use policy was not accepted. 403
PolicyDelete UserAccessToPolicyNotAuthorized The member does not have permission to access the

policy.
403

PolicyGet AccountIDNotValid The account ID is not valid. 400
PolicyGet AccountStatusNotValid The account status is not valid. 400
PolicyGet NodeUserIdFailure The node/member does not exist for the node. 500
PolicyGet PolicyClassNotValid The policy class is not valid 400
PolicyGet PolicyIdNotValid The policy ID is not valid. 400
PolicyGet PolicyListIdNotValid The policy list ID is not valid. 400
PolicyGet PolicyNotFound The policy was not found. 404
PolicyGet UserStatusNotValid The member's status is not valid. 400
PolicyUpdate AccountIDNotValid The account ID is not valid. 400
PolicyUpdate AccountStatusNotValid The account status is not valid. 400
PolicyUpdate DuplicatePolicyCannotBeAdded The requested policy already exists. 403
PolicyUpdate EnableManageUserConsentRequired The setting of the EnableManageUserConsent policy

prevents the requested action from being completed.
403

PolicyUpdate EnableUserDataUsageConsentCannot
BeDeleted

The EnableUserDataUsageConsent policy cannot be
removed.

400

PolicyUpdate IncomingPoliciesOrExistingPoliciesAre
Invalid

The requested policies or those already applied are
not valid.

400

PolicyUpdate LockerViewAllConsentCannotBeDelet
ed

The LockerViewAllConsent policy cannot be removed. 403

PolicyUpdate PolicyActorInvalid The policy actor is not valid. 400
PolicyUpdate PolicyClassInvalid The policy class is not valid. 400
PolicyUpdate PolicyClassNotValid The policy class is not valid 400
PolicyUpdate PolicyCreatorInvalid The policy creator is not valid. 400
PolicyUpdate PolicyCreatorNotFound The policy creator was not found. 404
PolicyUpdate PolicyIdNotValid The policy ID is not valid. 400
PolicyUpdate PolicyInfoInURLNotValid The policy information in the URL is not valid. 400
PolicyUpdate PolicyListInvalid The policy list is not valid. 400
PolicyUpdate PolicyNotFound The policy was not found. 404
PolicyUpdate PolicyRequestingEntityInvalid The policy requesting entity is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 299

API Error ID Reason Status
PolicyUpdate PolicyRequestingEntityInvalidForPolic

yClass
The policy requesting entity is not valid for the policy
class.

400

PolicyUpdate PolicyRequestingEntityNotFound The policy requesting entity is not valid. 404
PolicyUpdate PolicyResourceInvalid The policy resource is not valid. 400
PolicyUpdate PolicyResourceInvalidForPolicyClass The policy resource is not valid for the policy class. 400
PolicyUpdate PolicyResourceNotFound The policy resource was not found. 404
PolicyUpdate PolicyResourceStatusRequired A policy resource status is required. 400
PolicyUpdate PolicyStatusNotValid The policy's status is not valid. 400
PolicyUpdate PolicyUpdatorInvalid The requesting member of the policy update is not

valid.
400

PolicyUpdate PolicyUpdatorNotFound The requestor of the policy update was not found. 404
PolicyUpdate ResourceStatusRequired The resource status is required. 400
PolicyUpdate TOUAcceptanceNotAllowedViaPolicy

Update
Terms of Use acceptance cannot be performed using
this method.

405

PolicyUpdate TOUNotAccepted The Terms of Use policy was not accepted. 403
PolicyUpdate UserStatusNotValid The member's status is not valid. 400
ResourcePropertyQuery PrimaryEmailAddressMinLengthNotM

et
The primary email address is too short. 400

ResourcePropertyQuery UserNameMinimumLengthNotMet The sign-in name is too short. 400
ResourcePropertyQuery XPathExpressionisInvalid The XPath expression is not valid. 400
RightsLockerDataGet FilterClassNotValid The filter class is not valid. 400
RightsLockerDataGet FilterCountNotValid The filter count is not valid. 400
RightsLockerDataGet FilterOffsetNotValid The filter offset is not valid. 400
RightsLockerDataGet ResponseQueryParameterNotValid The response query parameter is not valid (must be

token, reference, download, or metadata).
400

RightsTokenCreate AlidCidMappingNotFound The mapping between the logical asset (ALID) and the
content ID was not found.

404

RightsTokenCreate ALIDInBundleNotFound The logical asset (ALID) was not found in the bundle. 404
RightsTokenCreate AssetLogicalIDNotActive The logical asset (ALID) is not active. 403
RightsTokenCreate AssetLogicalIDNotFound The logical asset (ALID) was not found. 404
RightsTokenCreate BundleIDNotActive The bundle is not active. 403
RightsTokenCreate BundleIDNotFound The bundle ID was not found. 404
RightsTokenCreate DiscreteMediaRightsRemainingNotAll

owed
The number of discrete rights remaining cannot be
set during rights token creation.

400

RightsTokenCreate DisplayNameLanguageNotValid The language of the display name is not valid. 400
RightsTokenCreate DisplayNameNotValid The display name is not valid. 400
RightsTokenCreate FulfillmentLocNotValid The fulfillment location is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 300

API Error ID Reason Status
RightsTokenCreate FulfillmentWebLocMediaProfileRequir

ed
The fulfillment location is required. 400

RightsTokenCreate HDContentProfileForLogicalAssetNotA
llowed

The HD content profile is not allowed for the logical
asset (ALID).

403

RightsTokenCreate MediaProfileNotValid The media profile is not valid. 400
RightsTokenCreate MediaProfileRequired A media profile is required. 400
RightsTokenCreate PurchaseAccountNotValid The purchase account ID is not valid. 400
RightsTokenCreate PurchaseNodeIDNotValid The purchase node ID is not valid. 400
RightsTokenCreate PurchaseUserNotValid The purchasing member's user ID is not valid. 400
RightsTokenCreate RightsLockerNotFound The rights locker was not found. 404
RightsTokenCreate SDContentProfileForLogicalAssetNotA

llowed
The standard-definition content profile is not allowed
for the logical asset (ALID).

403

RightsTokenCreate StandardDefinitionMissing The standard-definition media profile is missing. 400
RightsTokenCreate TransactionTypeIDNotValid The transaction type is not valid. 400
RightsTokenCreate UHDContentProfileForLogicalAssetNo

tAllowed
The UHD content profile is not allowed for the logical
asset (ALID).

403

RightsTokenListCreate RightsTokenListWithEmptyData RightsTokenListCreate does not have RightsToken 400
RightsTokenListCreate ExceededTheMaximumNoOfRightsTo

ken
RightsTokenListCreate exceeds the maximum number
of RightsToken

400

RightsTokenListCreate AccountIdUnmatched The account ID does not match. 403
RightsTokenListCreate RightsLockerIDInRequestDoNotMatch

AccountRightsLockerID
The rights locker ID does not match. 400

RightsTokenListCreate ProfileParametersNotAllowedForMed
iaProfileSD

Profile parameters are not allowed for media profile
SD

400

RightsTokenListCreate AssetLogicalIDNotValid The logical asset (ALID) is not valid. 400
RightsTokenListCreate ContentIDNotValid The content is not valid. 400
RightsTokenListCreate BundleIDNotValid The bundle is not valid. 400
RightsTokenListCreate DisplayNameNotValid The display name is not valid. 400
RightsTokenListCreate DisplayNameLanguageNotValid Language of the display name is not valid. 403
RightsTokenListCreate PurchaseAccountNotValid The purchase account ID is not valid. 400
RightsTokenListCreate PurchaseUserNotValid The purchasing member's user ID is not valid. 400
RightsTokenListCreate PurchaseNodeIDNotValid The purchase node ID is not valid. 400
RightsTokenListCreate FulfillmentLocNotValid The fulfilment location is not valid. 400
RightsTokenListCreate FulfillmentWebLocMediaProfileRequir

ed
The fulfilment location is required. 400

RightsTokenListCreate StreamWebLocRequired StreamWebLoc is required 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 301

API Error ID Reason Status
RightsTokenListCreate DiscreteMediaRightsRemainingNotAll

owed
The number of discrete rights remaining cannot be
set during rights token creation.

400

RightsTokenListCreate StandardDefinitionMissing The standard-definition media profile is missing. 400
RightsTokenListCreate AlidCidMappingNotFound The mapping between the logical asset (ALID) and the

content ID was not found.
404

RightsTokenListCreate ALIDInBundleNotFound The logical asset (ALID) was not found in the bundle. 404
RightsTokenListCreate AssetLogicalIDNotActive The logical asset (ALID) is not active. 403
RightsTokenListCreate AssetLogicalIDNotFound The logical asset (ALID) was not found. 404
RightsTokenListCreate BundleIDNotActive The bundle is not active. 403
RightsTokenListCreate BundleIDNotFound The bundle ID was not found. 404
RightsTokenListCreate HDContentProfileForLogicalAssetNotA

llowed
The HD content profile is not allowed for the logical
asset (ALID).

403

RightsTokenListCreate SDContentProfileForLogicalAssetNotA
llowed

The standard-definition content profile is not allowed
for the logical asset (ALID).

403

RightsTokenListCreate UHDContentProfileForLogicalAssetNo
tAllowed

The UHD content profile is not allowed for the logical
asset (ALID).

403

RightsTokenListCreate PurchaseUserNotValid The purchasing member's user ID is not valid. 400
RightsTokenListCreate PurchaseNodeIDNotValid The purchase node ID is not valid. 400
RightsTokenListCreate FulfillmentLocNotValid The fulfilment location is not valid. 400
RightsTokenListCreate FulfillmentWebLocMediaProfileRequir

ed
The fulfilment location is required. 400

RightsTokenListCreate RightsLockerNotFound The rights locker was not found. 404
RightsTokenListCreate TransactionTypeIDNotValid The transaction type is not valid. 400
RightsTokenDataGet AssetLogicalIDNotActive The logical asset (ALID) is not active. 403
RightsTokenDataGet NativeDRMClientIDNotFound The native DRM client ID was not found. 404
RightsTokenDelete AccountIDNotValid The account ID is not valid. 400
RightsTokenDelete RightsTokenAlreadyDeleted The rights token has already been removed. 403
RightsTokenDelete RightsTokenNodeNotIssuer The requesting node did not issue the rights token,

and therefore cannot delete it.
403

RightsTokenDelete RightsTokenNotFound The rights token was not found. 404
RightsTokenGet AccountDoesNotHaveRightsTokenInU

RL
The rights token was not found in the account. 400

RightsTokenGet RightsTokenNotAvailable The rights token is not available. 403
RightsTokenGet RightsTokenNotFound The rights token was not found. 404
RightsTokenGetAlid AssetIdentifierNotValid The physical asset (APID) or the logical asset (ALID) is

not valid.
400

RightsTokenGetAlid AssetLogicalIDNotActive The logical asset (ALID) is not active. 403

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 302

API Error ID Reason Status
RightsTokenGetAlid AssetLogicalIDNotFound The logical asset (ALID) was not found. 404
RightsTokenResourceStatusUpdat
e

AccountDoesNotHaveRightsTokenInU
RL

The rights token was not found in the account. 400

RightsTokenResourceStatusUpdat
e

NodeIdOrgIdUnmatched The node does not belong to the organization. 400

RightsTokenResourceStatusUpdat
e

ResourceAlreadyinSameStatus The resource is already in the requested status. 409

RightsTokenResourceStatusUpdat
e

ResourceStatusTransitionRequestedN
otAllowed

The requested status transition is not allowed for the
resource.

403

RightsTokenResourceStatusUpdat
e

RightsTokenNotFound The rights token was not found. 404

RightsTokenResourceStatusUpdat
e

StatusInvalid The status is not valid. 400

RightsTokenUpdate AccountDoesNotHaveRightsTokenInU
RL

The rights token was not found in the account. 400

RightsTokenUpdate AssetLogicalIDNotActive The logical asset (ALID) is not active. 403
RightsTokenUpdate AssetLogicalIDNotFound The logical asset (ALID) was not found. 404
RightsTokenUpdate DisplayNameLanguageNotValid The language of the display name is not valid. 400
RightsTokenUpdate FulfillmentLocNotValid The fulfillment location is not valid. 400
RightsTokenUpdate FulfillmentWebLocMediaProfileRequir

ed
The fulfillment location is required. 400

RightsTokenUpdate HDContentProfileForLogicalAssetNotA
llowed

The HD content profile is not allowed for the logical
asset (ALID).

403

RightsTokenUpdate MediaProfileNotValid The media profile is not valid. 400
RightsTokenUpdate MediaProfileRequired A media profile is required. 400
RightsTokenUpdate PurchaseAccountNotFound The purchase account was not found. 404
RightsTokenUpdate PurchaseAccountNotValid The purchase account ID is not valid. 400
RightsTokenUpdate PurchaseNodeIDNotValid The purchase node ID is not valid. 400
RightsTokenUpdate PurchaseProfileHasDMRAlreadyCreat

ed
The purchase profile already has a discrete media
right.

400

RightsTokenUpdate PurchaseTimeNotValid The purchase time is not valid. 400
RightsTokenUpdate PurchaseUserDoesNotBelongToPurch

aseAccount
The purchasing member does not belong to the
purchase account.

400

RightsTokenUpdate PurchaseUserNotFound The purchasing member was not found. 404
RightsTokenUpdate PurchaseUserNotValid The purchasing member's user ID is not valid. 400
RightsTokenUpdate RightsLockerIDInRequestDoNotMatch

AccountRightsLockerID
The rights locker ID does not match. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 303

API Error ID Reason Status
RightsTokenUpdate RightsLockerNotFound The rights locker was not found. 404
RightsTokenUpdate RightsTokenNodeNotIssuer The requesting node did not issue the rights token,

and therefore cannot delete it.
403

RightsTokenUpdate RightsTokenNotFound The rights token was not found. 404
RightsTokenUpdate RightsTokenNotPurchasedThroughRet

ailer
The rights token being updated was not purchased
through the retailer.

403

RightsTokenUpdate SDContentProfileForLogicalAssetNotA
llowed

The standard-definition content profile is not allowed
for the logical asset (ALID).

403

RightsTokenUpdate StandardDefinitionMissing The standard-definition media profile is missing. 400
RightsTokenUpdate TransactionTypeIDNotValid The transaction type is not valid. 400
StreamCreate AccountStreamCountExceedMaxLimit The maximum number of streams allowed in an

account has been reached.
409

StreamCreate CalculationMethodNotValid The calculation method is not valid. 400
StreamCreate ConfidenceOutOfRange Confidence must be between 1 and 100. 400
StreamCreate GeoLocationValueFormatNotValid The format of the country name, postal code, or

subdivision is not valid.
400

StreamCreate RightsTokenNotActive The rights token is not active. 403
StreamCreate RightsTokenNotFound The rights token was not found. 404
StreamCreate StreamClientNicknameTooLong The stream client nickname is too long. 400
StreamCreate StreamRightsNotGranted The logical asset (ALID) cannot be streamed. 403
StreamCreate StreamTransactionIdInvalid The stream transaction ID is not valid. 400
StreamCreate UserIdUnmatched The user ID does not match. 403
StreamCreate UserNotSpecified A user ID is required. 400
StreamCreate UserPrivilegeAccessRestricted The user does not have permission to access this

content.
403

StreamCreate ViaProxyNotValid The via proxy element is not valid. 400
StreamDelete StreamHandleIDNotValid The stream handle ID is not valid. 400
StreamDelete StreamHandleIDRequired A stream handle ID is required. 400
StreamDelete StreamNotFound The stream was not found. 404
StreamDelete StreamOwnerMismatch The stream's owner does not match. 403
StreamDelete UserNotSpecified A user ID is required. 400
StreamDelete UserPrivilegeAccessRestricted The user does not have permission to access this

content.
403

StreamListView UserNotSpecified A user ID is required. 400
StreamRenew RightsTokenNotActive The rights token is not active. 403
StreamRenew RightsTokenNotFound The rights token was not found. 404
StreamRenew StreamHandleIDNotValid The stream handle ID is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 304

API Error ID Reason Status
StreamRenew StreamHandleIDRequired A stream handle ID is required. 400
StreamRenew StreamNotActive The stream is not active. 403
StreamRenew StreamNotFound The stream was not found. 404
StreamRenew StreamOwnerMismatch The stream's owner does not match. 403
StreamRenew StreamRenewExceedsMaximumTime The stream-renewal request exceeds the maximum

allowable time.
409

StreamRenew StreamRightsNotGranted The logical asset (ALID) cannot be streamed. 403
StreamRenew UserNotSpecified A user ID is required. 400
StreamRenew UserPrivilegeAccessRestricted The user does not have permission to access this

content.
403

StreamView StreamHandleIDNotValid The stream handle ID is not valid. 400
StreamView StreamHandleIDRequired A stream handle ID is required. 400
StreamView StreamNotFound The stream was not found. 404
StreamView StreamOwnerMismatch The stream's owner does not match. 403
StreamView UserNotSpecified A user ID is required. 400
UserCreate AccountActiveUserCountReachedMax

Limit
The maximum number of active members allowed
has been reached.

400

UserCreate AccountStatusNotValid The account status is not valid. 400
UserCreate AccountUserAddressNotValid The address is not valid. 400
UserCreate AccountUserAlternateEmailNotValid The alternate email address is not valid. 400
UserCreate AccountUserCountryNotValid The country is not valid. 400
UserCreate AccountUserEmailAddressDuplicated The email address is a duplicate. 400
UserCreate AccountUserGivenNameNotValid The given name is not valid. 400
UserCreate AccountUserLanguageDuplicated The language is a duplicate. 400
UserCreate AccountUserLanguageNotValid The language is not valid. 400
UserCreate AccountUserMobilePhoneNumberNot

Valid
The mobile telephone number is not valid. 400

UserCreate AccountUsernameRegistered The sign-in name already exists. 400
UserCreate AccountUserPasswordNotValid The password is not valid. 400
UserCreate AccountUserPrimaryEmailNotValid The primary email address is not valid. 400
UserCreate AccountUserPrimaryLanguageNotVali

d
The primary language is not valid. 400

UserCreate AccountUserSecurityAnswerNotValid The answer to the security question is not valid. 400
UserCreate AccountUserSecurityQuestionDuplicat

ed
The security question is a duplicate. 400

UserCreate AccountUserSecurityQuestionIDNotV
alid

The security question is not valid. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 305

API Error ID Reason Status
UserCreate AccountUserSurnameNotValid The surname is not valid. 400
UserCreate AccountUserTelephoneNumberNotVa

lid
The telephone number is not valid. 400

UserCreate CountryNotValid The country is not valid. 400
UserCreate FirstUserMustBeCreatedWithFullAcce

ssPrivilege
The first member must be a full-access member. 403

UserCreate PrimaryEmailConfirmationEndpointRe
quired

A confirmation endpoint is required for the member
primary email address.

400

UserCreate PrimaryEmailVerifiedAttributeMustBe
True

If the member's primary email address has been
verified by the node, the setting of the
PrimaryEmailVerified attribute must be set to TRUE.

400

UserCreate RequestorNotActive The requestor is not active. 403
UserCreate RequestorNotAllowedToCreateUsers The requesting member does not have permission to

create a member.
403

UserCreate RequestorNotFound The requestor was not found. 404
UserCreate RequestorPrivilegeInsufficient You do not have permission to perform this action.

Ask a full access member of your account for help.
403

UserCreate RequestorPrivilegeInsufficientToCreat
eFullAccessUser

The requesting member does not have permission to
create a full-access member.

403

UserCreate UserPrimaryEmailVerificationDateNot
Valid

The verification date for the member's primary email
address is not valid.

400

UserCreate UserPrimaryEmailVerificationEntityNo
tValid

The node that verified the member's primary email
address is not valid.

400

UserCreate UserPrimaryEmailVerificationEntityRe
quired

The node that verified the member's primary email
address must be identified.

400

UserCreate UserPrimaryEmailVerificationStatusRe
quired

The verification status is required. 400

UserCreate ValidPrimaryEmailVerificationDateRe
quired

The verification date for the user primary email
address is required.

400

UserCreate VerificationStatusNotConsistentWithV
erifiedAttributeDeclaration

The verification status is not consistent with the
declaration of a verified attribute.

400

UserDelete AccountUserAlreadyDeleted The member has already been removed. 400
UserDelete LastFullAccessUserofAccountCannotB

eDeleted
The last remaining full-access member in an account
cannot be removed.

403

UserDelete NodeUnauthorizedToActOnAccount The request is not authorized. 401
UserDelete NodeUnauthorizedToDeleteSuspende

dUsers
The request is not authorized. 401

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 306

API Error ID Reason Status
UserDelete RequestorNotActive The requestor is not active. 403
UserDelete RequestorNotFound The requestor was not found. 404
UserDelete RequestorPermissionInsufficientToDel

eteUser
The requesting member cannot delete the member. 400

UserDelete RequestorPrivilegeInsufficient You do not have permission to perform this action.
Ask a full access member of your account for help.

403

UserDelete RequestorPrivilegeInsufficientToDelet
eFullAccessUser

The requesting member does not have permission to
delete a full-access member.

403

UserDelete UserSAMLTokenDeleteFailed Deletion of the member's security token failed. 500
UserGet AccountUserStatusDeleted The member has been removed. 400
UserGet NodeUnauthorizedToActOnAccount The request is not authorized. 401
UserGet RequestorNotActive The requestor is not active. 403
UserGet RequestorNotFound The requestor was not found. 404
UserGetForDataSharing DataSharingConsentDurationExceede

d
The duration of the DataSharingConsent policy has
been exceeded.

403

UserGetForDataSharing DataSharingConsentRequired The DataSharingConsent policy is required. 403
UserGetForDataSharing NodeUnauthorizedToActOnAccount The request is not authorized. 401
UserGetForDataSharing RequestorNotFound The requestor was not found. 404
UserListGet AccountUserStatusDeleted The member has been removed. 400
UserListGet NodeUnauthorizedToActOnAccount The request is not authorized. 401
UserListGet RequestorNotActive The requestor is not active. 403
UserListGet RequestorNotFound The requestor was not found. 404
UserResourceStatusUpdate AccountActiveUserCountReachedMax

Limit
The maximum number of active members allowed
has been reached.

400

UserResourceStatusUpdate NodeUnauthorizedToActOnAccount The request is not authorized. 401
UserResourceStatusUpdate ResourceAlreadyInRequestedStatus The resource is already in the requested status. 400
UserResourceStatusUpdate ResourceStatusTransitionRequestedN

otAllowed
The requested status transition is not allowed for the
resource.

403

UserResourceStatusUpdate StatusInvalid The status is not valid. 400
UserResourceStatusUpdate TOUPolicyRequiredToPromoteUserTo

ActiveStatus
The Terms of Use have not been accepted. 403

UserUpdate AccountUserAddressNotValid The address is not valid. 400
UserUpdate AccountUserAlternateEmailNotValid The alternate email address is not valid. 400
UserUpdate AccountUserCountryNotValid The country is not valid. 400
UserUpdate AccountUserEmailAddressDuplicated The email address is a duplicate. 400
UserUpdate AccountUserGivenNameNotValid The given name is not valid. 400
UserUpdate AccountUserLanguageDuplicated The language is a duplicate. 400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 307

API Error ID Reason Status
UserUpdate AccountUserLanguageNotValid The language is not valid. 400
UserUpdate AccountUserMobilePhoneNumberNot

Valid
The mobile telephone number is not valid. 400

UserUpdate AccountUsernameRegistered The sign-in name already exists. 400
UserUpdate AccountUserPasswordNotValid The password is not valid. 400
UserUpdate AccountUserPrimaryEmailNotValid The primary email address is not valid. 400
UserUpdate AccountUserPrimaryLanguageNotVali

d
The primary language is not valid. 400

UserUpdate AccountUserSecurityAnswerNotValid The answer to the security question is not valid. 400
UserUpdate AccountUserSecurityQuestionDuplicat

ed
The security que`stion is a duplicate. 400

UserUpdate AccountUserSecurityQuestionIDNotV
alid

The security question is not valid. 400

UserUpdate AccountUserSurnameNotValid The surname is not valid. 400
UserUpdate AccountUserTelephoneNumberNotVa

lid
The telephone number is not valid. 400

UserUpdate CountryCannotBeChangedOnceSet The country cannot be changed. 400
UserUpdate CountryNotValid The country is not valid. 400
UserUpdate LastFullAccessUserCannotBeDemoted

ToStandardOrBasicPrivilege
The permission level of the last remaining full-access
member in an account cannot be changed.

403

UserUpdate NodeUnauthorizedToActOnAccount The request is not authorized. 401
UserUpdate NodeUnauthorizedToActOnUser The request is not authorized. 403
UserUpdate NodeUnauthorizedToUpdateUserCred

entials
The node cannot change the member's security
credentials.

403

UserUpdate NodeUnauthorizedToUpdateUserInfo
rmation

The node is not authorized to update member
information.

403

UserUpdate NodeUnauthorizedToUpdateUserPass
word

The node cannot change the member's password. 403

UserUpdate PrimaryEmailConfirmationEndpointRe
quired

A confirmation endpoint is required for the member
primary email address.

400

UserUpdate PrimaryEmailVerifiedAttributeMustBe
True

If the member's primary email address has been
verified by the node, the setting of the
PrimaryEmailVerified attribute must be set to TRUE.

400

UserUpdate RequestorNotActive The requestor is not active. 403
UserUpdate RequestorNotAllowedToUpdateOther

Users
The requesting member cannot update another
member.

400

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 308

API Error ID Reason Status
UserUpdate RequestorNotAllowedToUpdateUserA

ccessLevel
The requesting member cannot update a member's
permission level.

403

UserUpdate RequestorNotAllowedToUpdateUserI
nformation

The requesting member cannot update member
information.

403

UserUpdate RequestorNotFound The requestor was not found. 404
UserUpdate RequestorPrivilegeInsufficientToUpda

teUserClass
The requesting member does not have permission to
change the member's permission level.

403

UserUpdate StandardUserNotAllowedToUpdateFu
llAccessUserInformation

The member does not have permission to change the
member’s information.

403

UserUpdate UserPrimaryEmailVerificationDateNot
Valid

The verification date for the member's primary email
address is not valid.

400

UserUpdate UserPrimaryEmailVerificationEntityNo
tValid

The node that verified the member's primary email
address is not valid.

400

UserUpdate UserPrimaryEmailVerificationEntityRe
quired

The node that verified the member's primary email
address must be identified.

400

UserUpdate UserPrimaryEmailVerificationStatusIn
valid

UserUpdate UserPrimaryEmailVerificationStatusRe
quired

The verification status is required. 400

UserUpdate UserPrivilegeCannotBeChanged The member's permission level cannot be changed. 403
UserUpdate UserStatusNotValid The member's status is not valid. 400
UserUpdate ValidPrimaryEmailVerificationDateRe

quired
The verification date for the user primary email
address is required.

400

UserUpdate VerificationStatusNotConsistentWithV
erifiedAttributeDeclaration

The verification status is not consistent with the
declaration of a verified attribute.

400

UserValidationTokenCreate NodeUnauthorizedToActOnAccount The request is not authorized. 401
UserValidationTokenCreate RequestCannotBeServiced The request cannot be serviced. 403
UserValidationTokenCreate RequestorNotActive The requestor is not active. 403
UserValidationTokenCreate RequestorNotFound The requestor was not found. 404
UserValidationTokenCreate SecurityTokenResponseTypeNotValid The security token response type is not valid. 400
UserValidationTokenCreate TokenTypeNotValid The token type is not valid 400
UserValidationTokenCreate ULCPolicyMissingInAuthnRequest The UserLinkConsent policy is missing. 403
UserValidationTokenCreate UserIdentifierNotFound The user ID was not found. 404
UserValidationTokenCreate UserIdentifierRequired A user ID is required. 400
UserValidationTokenCreate UserStatusNotValid The member's status is not valid. 400
UserValidationTokenCreate ValidationTokenRetryLimitReached The maximum number of validation token requests

allowed for the member has been reached.
403

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 309

21.2 S-Host Error Messages
Error ID Reason Status
AccountMergeLoginNotAllowed This account cannot be merged at this time. Please visit our Help & FAQs. 200
AccountMergeLoginNotAllowedUse
rPrivilegeNotFull

Only full members can merge accounts. To merge with this account, sign in as a full member of
the second account.

200

AccountUserCredentialsInvalid We don't recognize your sign-in name, your password, or both. Please try again. 200
AccountUserExceededAllowedFaile
dLoginAttempts

We don't recognize your sign-in name, your password, or both. Please try again. 200

AccountUserStatusLocked Your membership is not in a valid status. Please contact Customer Support. 200
AccountUserStatusSuspended Your membership is suspended. Please contact Customer Support. 200
CaptchaInputDoesNotMatch The text you entered does not match the displayed image. 200
CaptchaInputRequired Please enter the text you see in the image. 200
EmailNotValid We don't recognize that email address. Please try again. 200
EmailNotVerified The email address is unverified. 200
FormauthLaspBindingAccessPermiss
ion

You have not provided permission to use this service. Please contact Customer Support. 403

FormauthLaspFlippingLimit You have switched back and forth too many times between two streaming services. Please try
again later.

403

FormauthLaspLimitReached You can only create two links to a streaming service that stays connected to devices such as a
cable box, game console, smart TV, or connected Blu-ray player. To proceed, unlink one of
your current links to this streaming service (from your Member Details page at uvvu.com) or
check with the service for other options.

403

PasswordNotValid We don't recognize your sign-in name, your password, or both. Please try again. 200
RequestorPrivilegeInsufficient You do not have permission to perform this action. Ask a full access member of your account

for help.
403

RequestorPrivilegeInsufficientToUp
dateUserPolicies

You do not have permission to make this change. Ask a full member of your account for help. 403

SamlLogoutCancelledByUser The request to unlink your UltraViolet account has been cancelled. 200
SignInCancelledByUser The request to sign in to your UltraViolet account has been cancelled. 200
SubjectQueryNotSupported Your request is not authorized. Please contact Customer Support. 200
TermsOfUseNotAcceptedByCLG Your parent or legal guardian must accept the UltraViolet Terms of Use on your behalf before

you can use this UltraViolet account.
400

TokenNotValid The message you're using may have expired, or it may have been used before. 200

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 310

Error ID Reason Status
TokenNotValidForDelegation The message you're using to link your account didn't work correctly. It may have expired, or it

may have been used before.
200

TokenNotValidForResetPassword The message you're using to recover your password didn't work correctly. It may have expired,
or it may have been used before.

200

TokenNotValidForValidateEmail The message you're using to validate your email didn't work correctly. It may have expired, or
it may have been used before. Try requesting another message.

200

Unauthorized The request is not authorized. 401
UnexpectedError An unexpected error has occurred. Please try again. 200
UserCredentialRecoveryComplete The request to recover your sign-in credentials for your UltraViolet account has been

completed.
200

21.3 Security Layer Error Messages
Error ID Reason Status
bad_request The request is not valid. 400
certificate_not_provisioned The security token is required. 403
forbidden The request is not authorized. 403
InvalidAssertion The security token is required. 403
invalidDurationvalue The security token's duration is not valid. 403
invalidtoken The security token is not valid. 403
InvalidUserStatus The request is not authorized. 403
SecTokenMergeReplacementRequi
red

A replacement security token is required. 403

token_rejected The request is not authorized. 403
unauthorized The request is not authorized. 403
UnsupportedHTTPMethod The method is not supported. 501

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 311

22 Appendix C: Protocol Versions

DECE Protocol versions indicate the version of the Coordinator API specification, and are mapped to
specific Coordinator API versions. The following table indicates the version URN, the corresponding
Coordinator Specification, and the API endpoint BaseURL version.

Protocol Version Specification
Version

BaseURL Description

urn:dece:protocolversion:legacy v1.0 /rest/1/0 Applies to Device resources: indicates that
the Device is a Legacy Device.

urn:dece:protocolversion:1.0 v1.0 /rest/1/0 Corresponds to the Coordinator
specification versions 1.0 and 1.0.1.

urn:dece:protocolversion:1.0.2 v1.0.2 /rest/1/02 Corresponds to the Coordinator
specification version 1.0.2.

urn:dece:protocolversion:1.0.5 V1.0.5 /rest/1/02 Corresponds to the Coordinator
specification version 1.0.5.

urn:dece:protocolversion:1.0.6 V1.0.6 /rest/1/06 Corresponds to the Coordinator
specification version 1.0.6.

urn:dece:protocolversion:1.0.7 V1.0.7 /rest/1/07 Corresponds to the Coordinator
specification version 1.0.7.

urn:dece:protocolversion:1.1.1 V1.1.1 /rest/1/11 Corresponds to the Coordinator
specification version 1.1.1 .

urn:dece:protocolversion:1.1.1 V1.2 /rest/1/11 Corresponds to the Coordinator
specification version 1.2.

urn:dece:protocolversion:2.0 V2.0 /rest/2015
/02

Corresponds to the Coordinator
specification version 2.0.

urn:dece:protocolversion:2.1

V2.1 /rest/2015
/03

Corresponds to the Coordinator
specification version 2.1.

urn:dece:protocolversion:2.x V2.x /rest/2015
/03

Corresponds to the Coordinator
specification version 2.1x

Table 105: Protocol Versions

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 312

23 Appendix D: Policy Examples (Informative)

This Appendix intentionally left blank.

23.1 Parental-Control Policy Example

23.2 LockerDataUsageConsent Policy Example

23.3 EnableUserDataUsageConsent Policy Example

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 313

24 Appendix E: Coordinator Parameters

This section describes the operational usage model parameters used elsewhere in this document.
Additional usage model variables are defined in Appendix A of [DSystem].

Parameter Value Description

DCOORD_DELETION_RETENTION 90 The retention period for a deleted User or
Account resource.

DCOORD_DISCRETEMEDIA_LEASE_DURATION 6 hours The maximum time the Coordinator shall
allow a Discrete Media Lease to endure.

DCOORD_DISCRETEMEDIA_LEASE_EXPIRE_LIMIT 5 The maximum number of Discrete Media
Rights that are allowed to expire
automatically before the Node’s ability to
invoke the Coordinator’s Discrete Media
APIs is suspended.

DCOORD_DISCRETEMEDIA_LEASE_MAXTIME 24 hours The maximum time a lease on a Discrete
Media Right can be extended (renewed
by).

DCOORD_EMAIL_ADDRESS_MAXLENGTH 256 characters The maximum length allowed for an email
address field.

DCOORD_E-MAIL_CONFIRM_TOKEN_MAXLIFE 72 hours The maximum time the Coordinator shall
allow an e-mail confirmation token be
considered active and available for use.

DCOORD_E-MAIL_CONFIRM_TOKEN_MINLENGTH 16 characters The minimum allowed length for the
e-mail confirmation token created by the
Coordinator

DCOORD_E-MAIL_CONFIRM_TOKEN_MINLIFE 24 hours The minimum time the Coordinator shall
allow an e-mail confirmation token to be
considered active and available for use.

DCOORD_MAX_USERS 6 The maximum number of users in a single
account.

DCOORD_MAX_PENDING_USER_TOKEN_DURATION DCOORD_E-
MAIL_CONFIRM_
TOKEN_MAXLIFE

The maximum token duration for a user in
pending status. Note that when the
Coordinator automatically validates email
this parameter is irrelevant (See Section
14.1.3).

DGEO_AGEOFMAJORITY See applicable
Geography Policy

the age of a majority for that particular
jurisdiction, such that at or above this
value, the User is considered to have
reached the age of majority

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 314

Parameter Value Description
DGEO_CHILDUSER_AGE See applicable

Geography Policy
the age of a User, such that for users
under this value, the Coordinator can
implement special legal or operational
considerations when providing services to
children.

DCOORD_FAU_MIN_AGE See applicable
Geography Policy

The minimum age required to allow a User
to be granted the Full Access User role

DCOORD_SAU_MIN_AGE See applicable
Geography Policy

The minimum age required to allow a User
to be granted the Standard Access User
role

DCOORD_BAU_MIN_AGE See applicable
Geography Policy

The minimum age required to allow a User
to be granted the Basic Access User role

DCOORD_STREAM_INFO_MIN_RETENTION 30 days The minimum duration of Stream
information retention

DCOORD_STREAM_RENEWAL_MAX_ADD 6 hours The maximum duration a Stream can be
renewed for.

DCOORD_STREAM_MAX_TOTAL 24 hours The overall maximum duration of a
Stream

DCOORD_STREAM_CREATED 30 days Threshold for how long ago an already
deleted Stream was created.

DCOORD_JOIN_CODE_MAX_ACTIVE 6 The maximum number of allowed
outstanding active Join Codes for an
Account

DCOORD_VALIDATION_TOKEN_RETRY_LIMIT 3 The maximum number of consecutive
UserValidationTokenCreate API
invocations allowed per email address

DCOORD_VALIDATION_TOKEN_RETRY_TIMEOUT 15 minutes The time after which the retry counter is
reset by the Coordinator for the
UserValidationTokenCreate API and
supplied UserIdentifier parameter.

DCOORD_VALIDATION_TOKEN_MAX_LENGTH 12 bytes The maximum length of a validation token
in bytes. User interfaces implement to this
length.

DCOORD_VALIDATION_TOKEN_TYPICAL_LENGTH 8 bytes The typical length of a validation token in
bytes. This is to be used except under
circumstances where this length will result
in tokens that are not sufficiently unique.
The Coordinator need not generate tokens
longer than this value.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 315

Parameter Value Description
DCOORD_VALIDATION_DELEGATIONTOKEN_MAXLI
FE

6 hours The maximum token validity period for
verification tokens of type
urn:dece:type:token:delegati
ontokenrequest

DCOORD_CONFIRMATION_AGE 3 years The maximum amount of time that is
allowed to have transpired since a
previous email confirmation. See sections
14.1.3.3 and 14.2.12

DCOORD_MERGE_SESSION_AGE 24 hours The maximum age of a User Agent
(session) between a Node and the User
Agent.

DCOORD_MERGE_UNDO_PERIOD 180 days The maximum duration of the period
during which a Merge operation may be
undone.

DCOORD_DATA_SHARING_CONSENT_DURATION 15 minutes The maximum duration following the
creation of DataSharingConsent policy
that a Node can request User data for the
purpose of creating a remote (i.e., Node)
user account .

DCOORD_USERNAME_SEARCH_MIN_LENGTH 3 characters The minimum length of a username
substring search value

DCOORD_EMAIL_SEARCH_MIN_LENGTH 7 characters The minimum length of an email substring
search value

DCOORD_USERLIST_SEARCH_MAX_SIZE 256 The maximum number of elements in the
UserList that may be returned following a
ResourcePropertyQuery request.

DCOORD_TEST_INDICATOR test_-_ The match strings for identification of
test Accounts and test Users that
may be physically removed by the
Coordinator

DCOORD_TEST_PRESERVE_INDICATOR test_-keep- The set of match strings for
identification of test Accounts and
Users that will not be physically
removed by the Coordinator

DCOORD_USERLESS_ACCOUNTS_THRESHOLD 60 days The duration after which a userless

account can be physically removed
DCOORD_INACTIVITY_THRESHOLD 730 days The duration after which an account

with rights tokens is considered
inactive.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 316

Parameter Value Description
DCOORD_DEIDENTIFY_ACCOUNT_THRESHOLD 365 days The duration after which an account

and all users under it can be
deidentified.

DCOORD_DEIDENTIFY_USER_THRESHOLD 365 days The duration after which a user
account can be deidentified.

DCOORD_DEIDENTIFIED @@@deidentif
ied@@@

The string with which selected
properties of a deidentified
account/user need to be replaced.

DCOORD_PAGINATION_THRESHOLD 1000 The maximum number of Rights Tokens
(or references) returned by the
Coordinator.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 317

25 Appendix F: Geography Policy Requirements (Normative)

DECE services shall be launched to serve specific geographic regions that may include one or more
countries, provinces, or other jurisdictional regions. The provision of services in each of these regions
may require modifications to the operational characteristics of the Coordinator and the Nodes it serves.

Because of these differences, each operating region will require the creation of jurisdiction-specific
profile of this specification, and potentially other specifications. [DGeo] addresses the mandatory and
optional information that needs to be defined in order to operate within the requirements and
obligations of these regions. Implementations will be required to consult [DGeo] for their applicable
region(s).

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 318

26 Appendix G: Field Length Restrictions

While the XML Schema defined in this specification does not limit CDATA lengths, there are practical
limitations required to be enforced by the Coordinator. This Appendix documents those length
restrictions.

26.1 Limitations on the User Resource

Property Name
Maximum
length Comments

GivenName 64 characters

SurName 64 characters

PrimaryEmail - Value 256 bytes

AlternateEmail – Value *1 256 bytes

Address – PostalAddress *2 256 characters
 (limit number of
address lines to 3)

TelephoneNumber - Value 17 bytes

MobileTelephoneNumber - Value 17 bytes

Username 64 bytes

Password 256 bytes

DeviceJoinCode 15 bytes

EmailConfirmationToken 16 bytes

Language 16 bytes predefined list

Country 2 bytes predefined list

Display Image URL (or) 256 bytes

Display Image Data
5MB (will be
resized)

Locality (city) 128 characters

PostalCode 16 bytes

StateOrProvince 128 characters

26.2 Limitations on the Account Resource

Property Name
Maximum
length Comments

DisplayName 256 characters

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 319

Country 2 bytes (predefined list)

26.3 Limitations on the Rights Resource

Property Name
Maximum
length Comments

ALID 256 bytes

ContentID 256 characters

LicenseAcqBaseLoc 256 bytes

MediaProfile 64 bytes

DisplayName(RightsSoldAs) 256 characters

BundleID 256 bytes

ProductID 128 bytes

Location 256 bytes

RetailerTransaction 256 bytes

TransactionType 256 bytes

StreamClientNickname 256 bytes

CalculationMethod 128 characters

ViaProxy 32 characters

Confidence 20 characters

Resource 128 bytes

RequestingEntity 128 bytes

26.4 Limitations on the DigitalAsset Resource

Property Name
Maximum
length Comments

APID 256 bytes

ContentID 256 bytes

Description 256 bytes

Audio-Type 16 bytes

Audio-Codec 32 bytes

Audio-CodecType 256 bytes

Audio-BitrateMax 8 bytes

SampleRate 8 bytes

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 320

SampleBitDepth 8 bytes

Audio-Language 16 bytes

Channels 16 bytes

Audio-TrackReference 256 bytes

Video-Type 16 bytes

Video-Codec 32 bytes

Video-CodecType 256 bytes

MPEGProfile 256 bytes

MPEGLevel 16 bytes

Video-BitrateMax 8 bytes

AspectRatio 16 bytes

PixelAspect 16 bytes

WidthPixels 16 bytes

HeightPixels 8 bytes

ActiveWidthPixels 8 bytes

ActiveHeightPixels 8 bytes

FrameRate 8 bytes

ColorType 16 bytes

SubtitleLanguage 16 bytes
predefined language
list (metadata)

Video-TrackReference 256 bytes

Format 16 bytes

Subtitle-Description 64 bytes

Subtitle-Type 32 bytes

FormatType 16 bytes

Subtitle-Language 16 bytes

Subtitle-TrackReference 256 bytes

Image-Width 8 bytes

Image-Height 8 bytes

Image-Encoding 256 bytes

Image-TrackReference 256 bytes

Interactive-Type 256 bytes

Interactive-Language 16 bytes (predefined list)

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 321

Interactive-TrackReference 256 bytes

26.5 Limitations on the LogicalAsset Resource

Property Name
Maximum
length Comments

Version 8 bytes

ALID 256 bytes

ContentID 256 bytes

ContentProfile 64 bytes

DiscreteMediaFulfillmentMethods 256 bytes

AssentStreamLoc 256 bytes

FulfillmentGroupID 128 bytes

LatestContainerVersion 32 bytes

ActiveAPID 256 bytes

ReplacedAPID 256 bytes

RecalledAPID 256 bytes

ReasonURL 256 bytes

country 2 bytes Predefined list

countryRegion 32 bytes

allowedDiscreteMediaProfile 64 bytes

26.6 Limitations on the RightsToken Resource

Property Name
Maximum
length Comments

ALID 256 bytes

ContentID 256 bytes

BundleID 256 bytes

DisplayName 256 characters

Language 16 bytes Predefined list

ProductID 128 bytes

MediaProfile 256 bytes

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 322

26.7 Limitations on the BasicAsset Resource

Property Name
Maximum
length Comments

ContentId 256 characters

UpdateNum 8 bytes

WorkType 32 bytes

PictureFormat 16 bytes

ReleaseYear 16 bytes

RunLength 32 bytes

SequenceNumber 8 bytes

HouseSequenceNumber 32 characters

BasicAsset LocalizedInfo
Language 16 bytes
TitleDisplay19 19 characters
TitleDisplay60 60 characters
TitleSort 256 characters
Summary190 190 characters
Summary400 400 characters
Summary4000 4000 characters
VersionNote 256 characters
OriginalTitle 256 characters
CopyrightLine 512 characters
Genre 64 characters
Keyword 64 characters
ArtReference/Value 256 bytes
ArtReference/Resolution 32 bytes
People/Name/SortName 256 characters
People/Name/DisplayName 256 characters
People/Name/FirstGivenName 64 characters
People/Name/SecondGivenName 64 characters
People/Name/FamilyName 64 characters
People/Name/Suffix 16 characters
People/Name/Moniker 64 characters

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 323

People/Job/JobFunction 16 bytes
People/Job/@scheme 32 bytes
People/Job/JobDisplay 64 bytes
People/Job/BillingBlockOrder 8 bytes
People/Job/Character 64 bytes
Region-type/Country 2 bytes Predefined values
Region-type/CountryRegion 32 bytes Predefined values
ReleaseHistory-type/ReleaseType 32 bytes
AssociatedOrg/DisplayName 256 characters
AssociatedOrg/SortName 256 characters
AssociatedOrg/@OrganizationID 256 bytes
AssociatedOrg/@role 256 bytes
ContentRatingDetail-type/System 32 bytes
ContentRatingDetail-type/value 32 bytes
AltIdentifier/Namespace 256 bytes
AltIdentifier/Identifier 256 bytes
AltIdentifier/Location 256 bytes
People/Identifier/Identifier 256 bytes
People/Identifier/Namespace 256 bytes
People/Identifier/ReferenceLocation 256 bytes

26.8 Limitations on the Bundle Resource

Property Name
Maximum
length Comments

BundleID 256 byte
DisplayName 256 characters

26.9 Limitations on CompObj Resource

Property Name
Maximum
length Comments

DisplayName 256 characters

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited.

 P a g e | 324

26.10 Limitations on Legacy Device Resource

Property Name
Maximum
length Comments

DeviceID 256 bytes

DisplayName 128 characters

Model 64 characters

SerialNo 64 bytes

MimeType 32 bytes Predefined list

Brand 128 characters

Manufacturer 256 characters

ManagingRetailer 128 characters

Width 10 bytes

Height 10 bytes

Image 256 bytes

ManageRetailerURL 256 bytes

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 325

27 Appendix H: User Status and APIs Availability

The following represents whether the Coordinator will accept a call to the listed API based on the status of the User as determined from the
ResourceStatus field of the User Resource; that User being the subject of the Delegation Token used in an API request.

Note that in the case of Customer Support (CS) subrole, the agent identifies the User, then the Node obtains a Delegation Token.

In the table below:

• a dot indicates the API is accessible.

• “NA” means not applicable

• “portal” means the API is only accessible to the portal Role

Where APIs can be invoked with either User or Account Security Token Subject Scope, the table only applies when that scope is User.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 326

User Status
API

pending active blocked
:clg

blocked
:tou

deleted merge
deleted

suspended

Role CS Role CS Role CS Role CS Role CS Role CS Role CS
AccountGet
AccountDelete

AccountUpdate

AccountMerge

AccountMergeTest

RightsTokenCreate
RightsTokenGet
RightsTokenDelete
RightsTokenUpdate
RightsTokenDataGet
RightsTokenDataGet (DRMClientID) NA NA
RightsLockerDataGet

DiscreteMediaRightCreate
DiscreteMediaRightGet
DiscreteMediaRightConsume
DiscreteMediaRightList

DiscreteMediaRightLeaseCreate
DiscreteMediaRightLeaseRelease
DiscreteMediaRightLeaseRenew
DiscreteMediaRightLeaseConsume
DiscreteMediaRightUpdate
DiscreteMediaRightDelete

PolicyCreate
PolicyGet
PolicyDelete
PolicyUpdate portal

StreamCreate
StreamView
StreamListView

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 327

User Status
API

pending active blocked
:clg

blocked
:tou

deleted merge
deleted

suspended

Role CS Role CS Role CS Role CS Role CS Role CS Role CS
StreamRenew 2 2 2 2 2 2 2 2 2 2 2 2 2 2
StreamDelete 2 2 2 2 2 2 2 2 2 2 2 2 2 2

UserCreate
UserGet portal portal
UserList

UserDelete

UserUpdate portal

UserValidationTokenCreate
(with security token)

 3 3

UserValidationTokenCreate (no
security token)

 3 3

AssetMapALIDToAPID/APIDToALID
Get (User level)

Security Token Service (user
password profile)

 3 1 1 1 1 1

Security Token Service
(Device Auth profile)

Security Token Service (SAML2
profile)

Authentication (S host)

2 DLASPs have access only where indicated. Other LASPs access this API with Account level scope so User status is irrelevant.
3 Only for the urn:dece:role:dece:customersupport Role. See [DsecMech] section 8.1.4 for special considerations.

Coordinator API Specification Version 2.4

©2009-2016 Digital Entertainment Content Ecosystem (DECE) LLC. For your personal use only;
reproduction or distribution is prohibited. P a g e | 328

28 Appendix I: Requirements for Google Pub/Sub support

The new Publish and Subscribe service supported by the Coordinator may support multiple established services, however this initial release
of the new service will incorporate the Google Pub/Sub service. As additional services are supported, this section will be updated to include
the necessary information for each service.

28.1 Requirements for the Google Pub/Sub service

The Google Pub/Sub service is documented at [1] below. There are restrictions on its’ use such as a requirement to supply an HTTPS [TLS]
endpoint, however the x509 certificate that enables the TLS connection, is arbitrary. Its’ purpose is purely for message confidentiality.

The body of the message received from Google will match the data model described in section 18.1.3 base64 encoded within the standard
PubSub JSON object.

In order to use this service, the Coordinator manages the subscription process on behalf of all Nodes eligible to subscribe for notifications.

During initial Node provisioning, Nodes may indicate interest to the Coordinator in using the notification service, at which point the following
information needs to be provided (via a separate document):

• The event types the Node wishes to receive

• The TLS-protected URL(s) to which notifications will be sent

• Timeout value for messages. This value also controls how frequently missed messages are held by the Pub/Sub system before any
reattempts at delivery are made.

Should a Node wish to terminate their Subscription they are required to contact the Coordinator.

[1] Google Pub/Sub Documentation: https://cloud.google.com/pubsub/docs

END ###

	1 Introduction and Overview
	1.1 Scope
	1.2 Document Organization
	1.3 Document Conventions
	1.3.1 XML Conventions
	1.3.1.1 Naming Conventions
	1.3.1.2 Element Table Overview
	1.3.1.3 Parameter Naming Convention

	1.3.2 XML Namespaces

	1.4 Normative References
	1.5 Informative References
	1.6 General Notes
	1.7 Glossary of Terms
	1.8 Customer Support Considerations

	2 Communications Security
	2.1 User Credentials
	2.1.1 User Credential Recovery
	2.1.1.1 E-mail-based User Credential Recovery

	2.1.2 Securing E-mail Communications

	2.2 Invocation URL-based Security
	2.3 Node Authentication and Authorization
	2.3.1 Node Authentication
	2.3.2 Node Authorization
	2.3.2.1 Node Equivalence in Policy Evaluations

	2.3.3 Role Enumeration
	2.3.4 Node-Based Access Control

	2.4 User Access Levels
	2.5 User Delegation Token Profiles

	3 Resource-Oriented API (REST)
	3.1 Terminology
	3.2 Transport Binding
	3.3 Resource Requests
	3.3.1 Character encoding
	3.3.2 Connection Reuse

	3.4 Resource Operations
	3.5 Conditional Requests
	3.6 Request Throttling
	3.7 Temporary Failures
	3.8 Cache Negotiation
	3.9 Request Methods
	3.9.1 HEAD
	3.9.2 GET
	3.9.3 PUT and POST
	3.9.4 DELETE

	3.10 Request Encodings
	3.11 Coordinator REST URL
	3.11.1 Coordinator REST URL Parameter Encoding

	3.12 Coordinator URL Configuration Requests
	3.13 DECE Response Format
	3.13.1 Compression

	3.14 HTTP Status Codes
	3.14.1 Informational (1xx)
	3.14.2 Successful (2xx)
	3.14.3 Redirection (3xx)
	3.14.4 Client Error (4xx)
	3.14.5 Server Errors (5xx)

	3.15 Response Filtering and Ordering
	3.15.1 Additional Attributes for Resource Collections

	3.16 Entity Identifiers

	4 DECE Coordinator API Overview
	5 Policies
	5.1 Policy Resource Structure
	5.1.1 Policy Resource

	5.2 Using Policies
	5.3 Precedence of Policies
	5.4 Policy Data Structures
	5.4.1 PolicyList-type Definition
	5.4.2 Policy Type Definition

	5.5 Policy Classes
	5.5.1 Account Consent Policy Classes
	5.5.1.1 LockerViewAllConsent
	5.5.1.2 EnableUserDataUsageConsent
	5.5.1.3 EnableManageUserConsent
	5.5.1.4 ManageAccountConsent

	5.5.2 User Consent Policy Classes
	5.5.2.1 ManageUserConsent
	5.5.2.2 UserDataUsageConsent
	5.5.2.3 TermsOfUse
	5.5.2.4 UserLinkConsent
	5.5.2.5 Connected Legal Guardian Attestation Policy
	5.5.2.6 Special Geographic Privacy Assent Policy Class definition
	5.5.2.7 DataSharingConsent
	5.5.2.8 AdditionalEmailConsent

	5.5.3 Obtaining Consent
	5.5.3.1 Obtaining Consent at the Coordinator
	5.5.3.2 Obtaining Consent at a Node

	5.5.4 Allowed Consent by User Access Level
	5.5.5 Parental Control Policy Classes
	5.5.5.1 BlockUnratedContent
	5.5.5.2 AllowAdult
	5.5.5.3 RatingPolicy
	5.5.5.4 NoPolicyEnforcement

	5.5.6 Policy Abstract Classes
	5.5.7 Evaluation of Parental Controls
	5.5.7.1 RIAA Policies

	5.6 Policy APIs
	5.6.1 PolicyGet()
	5.6.1.1 API Description
	5.6.1.2 API Details
	5.6.1.3 Behavior

	5.6.2 PolicyCreate(), PolicyUpdate(), PolicyDelete()
	5.6.2.1 API Description
	5.6.2.2 API Details
	5.6.2.3 Behavior

	5.7 Consent Policy Dependencies and API availability
	5.8 Grace Periods for User Actions
	5.8.1 User Status and Grace Periods
	5.8.1.1 New Adult and Youth Users
	5.8.1.2 TOU Change for Adult and Youth Users
	5.8.1.3 New Child User with Connected Legal Guardian
	5.8.1.4 TOU Change for Child Users and their CLG

	5.9 Policy Status Transistions

	6 Assets: Metadata, ID Mapping and Bundles
	6.1 Metadata Functions
	6.1.1 MetadataBasicCreate() and MetadataDigitalCreate()
	6.1.1.1 API Description
	6.1.1.2 API Details
	6.1.1.3 Behavior
	6.1.1.4 MetadataBasicUpdate() and MetadataDigitalUpdate()API Description
	6.1.1.5 API Details
	6.1.1.6 Behavior

	6.1.2 MetadataBasicGet, MetadataDigitalGet
	6.1.2.1 API Description
	6.1.2.2 API Details
	6.1.2.3 Behavior

	6.1.3 MetadataBasicDelete(), MetadataDigitalDelete()
	6.1.3.1 API Description
	6.1.3.2 API Details
	6.1.3.3 Behavior

	6.1.4 MetadataBasicList()
	6.1.4.1 API Description
	6.1.4.2 API Details
	6.1.4.3 Behavior

	6.1.5 MetadataDigitalList()
	6.1.5.1 API Description
	6.1.5.2 API Details
	6.1.5.3 Behavior

	6.2 ID Mapping Functions
	6.2.1 MapALIDtoAPIDCreate(),MapALIDtoAPIDUpdate(), AssetMapALIDtoAPIDGet(), AssetMapAPIDtoALIDGet()
	6.2.1.1 API Description
	6.2.1.2 API Details
	6.2.1.3 Behavior

	6.2.2 LogicalAssetList()
	6.2.2.1 API Description
	6.2.2.2 API Details
	6.2.2.3 Behavior

	6.2.3 LogicalAssetDelete()
	6.2.3.1 API Description
	6.2.3.2 API Details
	6.2.3.3 Behavior

	6.3 Bundle Functions
	6.3.1 BundleCreate(), BundleUpdate()
	6.3.1.1 API Description
	6.3.1.2 API Details
	6.3.1.3 Behavior

	6.3.2 BundleGet()
	6.3.2.1 API Description
	6.3.2.2 API Details
	6.3.2.3 Behavior

	6.3.3 BundleDelete()
	6.3.3.1 API Description
	6.3.3.2 API Details
	6.3.3.3 Behavior

	6.4 Metadata
	6.4.1 DigitalAsset Definition
	6.4.1.1 Digital Asset Status Transitions

	6.4.2 BasicAsset Definition
	6.4.2.1 Basic Asset Status Transitions

	6.4.3 DigitalAssetList Definition
	6.4.4 BasicAssetList Definition

	6.5 Mapping Data
	6.5.1 Mapping Logical Assets to Content IDs
	6.5.1.1 LogicalAssetReference Definition

	6.5.2 Mapping Logical to Digital Assets
	6.5.2.1 LogicalAsset Definition
	6.5.2.2 LogicalAssetList Definition
	6.5.2.3 APID Grouping Scenarios
	6.5.2.4 AssetFulfillmentGroup Definition
	6.5.2.5 DigitalAssetGroup Definition
	6.5.2.6 RecalledAPID Definition
	6.5.2.7 AssetRestriction Definition

	6.5.3 MediaProfile Values

	6.6 Bundle Data
	6.6.1 Bundle Definition
	6.6.2 LogicalAssetReference Definition
	6.6.3 Bundle Status Transitions

	7 Rights
	7.1 Rights Functions
	7.1.1 Rights Token Visibility
	7.1.2 RightsTokenCreate()
	7.1.2.1 API Description
	7.1.2.2 API Details
	7.1.2.3 Behavior

	7.1.3 RightsTokenDelete()
	7.1.3.1 API Description
	7.1.3.2 API Details
	7.1.3.3 Behavior

	7.1.4 RightsTokenGet()
	7.1.4.1 API Description
	7.1.4.2 API Details
	7.1.4.3 Behavior

	7.1.5 RightsTokenDataGet()
	7.1.5.1 API Description
	7.1.5.2 API Details
	7.1.5.3 Behavior

	7.1.6 RightsLockerDataGet()
	7.1.6.1 API Description
	7.1.6.2 API Details
	7.1.6.3 Behavior

	7.1.7 RightsTokenUpdate()
	7.1.7.1 API Description
	7.1.7.2 API Details
	7.1.7.3 Behavior

	7.1.8 DownloadPlaybackLicenseReporting()
	7.1.8.1 API Description
	7.1.8.2 API Details
	7.1.8.3 Behavior

	7.1.9 RightsTokenListCreate()
	7.1.9.1 API Description
	7.1.9.2 API Details
	7.1.9.3 Behavior

	7.2 73BRights Token Resource
	7.2.1 190BRightsToken Definition
	7.2.2 191BRightsTokenBasic Definition
	7.2.3 192BSoldAs Definition
	7.2.4 193BRightsProfiles Definition
	7.2.5 194BPurchaseProfile Definition
	7.2.6 195BDiscreteMediaRights Definition
	7.2.7 196BRightsTokenInfo Definition
	7.2.8 197BRightsTokenLocation Definition
	7.2.9 198BResourceLocation Definition
	7.2.10 199BRightsTokenData Definition
	7.2.11 200BPurchaseInfo Definition
	7.2.12 201BRightsTokenFull Definition
	7.2.13 202BRightsTokenDetails Definition
	7.2.14 203BRightsTokenList Definition
	7.2.15 204BLicense-type Definition
	7.2.16 205BRights Token Status Transitions
	7.2.17 206BRights De-Identification Process

	8 7BLicense Acquisition
	9 8BDomains
	10 9BLegacy Devices
	10.1 74BLegacy Device Functions
	10.1.1 207BLegacyDeviceCreate()
	10.1.1.1 406BAPI Description
	10.1.1.2 407BAPI Details
	10.1.1.3 408BBehavior

	10.1.2 208BLegacyDeviceDelete()
	10.1.2.1 409BAPI Description
	10.1.2.2 410BAPI Details
	10.1.2.3 411BBehavior

	10.1.3 209BLegacyDeviceUpdate()
	10.1.3.1 412BAPI Description
	10.1.3.2 413BAPI Details
	10.1.3.3 414BBehavior

	11 10BStreams
	11.1 75BStream Functions
	11.1.1 210BStreamCreate()
	11.1.1.1 415BAPI Description
	11.1.1.2 416BAPI Details
	11.1.1.3 417BBehavior

	11.1.2 211BStreamListView(), StreamView()
	11.1.2.1 418BAPI Description
	11.1.2.2 419BAPI Details
	11.1.2.3 420BBehavior

	11.1.3 212BChecking for Stream Availability
	11.1.4 213BStreamDelete()
	11.1.4.1 421BAPI Description
	11.1.4.2 422BAPI Details
	11.1.4.3 423BBehavior

	11.1.5 214BStreamRenew()
	11.1.5.1 424BAPI Description
	11.1.5.2 425BAPI Details
	11.1.5.3 426BBehavior

	11.1.6 215BBatch Stream Reporting
	11.1.6.1 427BAPI Details
	11.1.6.2 428BBehavior

	11.1.7 216BStream Visibility Rules

	11.2 76BStream Types
	11.2.1 217BStreamList Definition
	11.2.2 218BStream Definition

	11.3 77BStream Status Transitions

	12 11BAccount Delegation
	12.1 78BTypes of Delegations
	12.1.1 219BDelegation for Rights Locker Access
	12.1.2 220BDelegation for Account and User Administration
	12.1.3 221BDelegation for Linked LASPs

	12.2 79BInitiating a Delegation
	12.3 80BRevoking a Delegation
	12.3.1 222BAuthorization

	13 12BAccounts
	13.1 81BAccount Functions
	13.1.1 223BInactive and Userless Accounts:
	13.1.2 224BAccount De-Identification Process:
	13.1.3 225BPeriodic removal of test accounts and related data
	13.1.4 226BAccountCreate()
	13.1.5 227BAccountUpdate()
	13.1.5.1 429BAPI Description
	13.1.5.2 430BAPI Details
	13.1.5.3 431BBehavior

	13.1.6 228BAccountDelete()
	13.1.6.1 432BAPI Description
	13.1.6.2 433BAPI Details
	13.1.6.3 434BBehavior

	13.1.7 229BAccountGet()
	13.1.7.1 435BAPI Description
	13.1.7.2 436BAPI Details
	13.1.7.3 437BBehavior

	13.1.8 230BAccountUserCreate()
	13.1.8.1 438BAPI Description
	13.1.8.2 439BAPI Details
	13.1.8.3 440BBehavior

	13.2 82BMerging Accounts
	13.2.1 231BBasic Process for Performing a Merge
	13.2.2 232BCommon Requirements for Account Merge APIs
	13.2.3 233BAccountMergeTest()
	13.2.3.1 441BAPI Description
	13.2.3.2 442BAPI Details
	13.2.3.3 443BRequest Behavior
	13.2.3.4 444BResponse Behavior

	13.2.4 234BAccountMerge()
	13.2.4.1 445BAPI Description
	13.2.4.2 446BAPI Details
	13.2.4.3 447BRequest Behavior
	13.2.4.4 448BResponse Behavior

	13.2.5 235BAccountMergeUndo()
	13.2.6 236BSpecial Requirements for Security Tokens for Merge

	13.3 83BAccount-type Definition
	13.3.1 237BAccountMerge-type definition
	13.3.2 238BAccountMergeRecord-type definition

	13.4 84BAccount Status Transitions

	14 13BUsers
	14.1 85BCommon User Requirements
	14.1.1 239BUser De-Identification Process:
	14.1.2 240BUser Functions
	14.1.3 241BUserCreate()
	14.1.3.1 449BAPI Description
	14.1.3.2 450BAPI Details
	14.1.3.3 451BBehavior

	14.1.4 242BUserGet(), UserList()
	14.1.4.1 452BAPI Description
	14.1.4.2 453BAPI Details
	14.1.4.3 454BBehavior
	14.1.4.3.1 531BUserGet for Data Sharing

	14.1.5 243BUserUpdate()
	14.1.5.1 455BAPI Description
	14.1.5.2 456BAPI Details
	14.1.5.3 457BBehavior
	14.1.5.4 458BPassword Resets
	14.1.5.5 459BUserRecoveryTokens (Security Questions)

	14.1.6 244BUserDelete()
	14.1.6.1 460BAPI Description
	14.1.6.2 461BAPI Details
	14.1.6.3 462BRequester Behavior

	14.1.7 245BUserValidationTokenCreate()
	14.1.7.1 463BAPI Description
	14.1.7.2 464BAPI Details
	14.1.7.3 465BBehavior
	14.1.7.4 466BEmail-based Delegation Security Token Establishment
	14.1.7.4.1 532BValidated Email Requests
	14.1.7.4.2 533BEmail message-based Requests

	14.2 86BUser Types
	14.2.1 246BUserData-type Definition
	14.2.2 247BUserContactInfo Definition
	14.2.3 248BConfirmedPostalAddress-type Definition
	14.2.4 249BConfirmedCommunicationEndpoint Definition
	14.2.5 250BAlternateEmail Definition
	14.2.6 251BVerificationAttr-group Definition
	14.2.6.1 467BVerificationStatus-type Definition

	14.2.7 252BPasswordRecovery Definition
	14.2.8 253BPasswordRecoveryItem Definition
	14.2.8.1 468BVisibility of User Attributes
	14.2.8.2 469BResourceStatus-type

	14.2.9 254BUserCredentials Definition
	14.2.10 255BPassword-type Definition
	14.2.11 256BUserContactInfo Definition
	14.2.12 257BConfirmedCommunicationEndpoint Definition
	14.2.13 258BLanguages Definition
	14.2.14 259BUserList Definition

	14.3 87BUser Status and APIs Availability
	14.4 88BUser Transition from Youth to Adult
	14.5 89BUser Status Transitions

	15 14BNode Management
	15.1 90BNodes
	15.1.1 Customer Support Considerations
	15.1.2 261BBasic API Usage by the DECE Customer Care Role
	15.1.3 262BDetermining Customer Support Scope of Access to Resources

	15.2 91BNode and Organization Functions
	15.2.1 263BNodeGet()
	15.2.1.1 470BAPI Description
	15.2.1.2 471BAPI Details
	15.2.1.3 472BBehavior

	15.2.2 264BNodeList()
	15.2.2.1 473BAPI Description
	15.2.2.2 474BAPI Details
	15.2.2.3 475BBehavior

	15.2.3 265BNodeCreate(), NodeUpdate()
	15.2.3.1 476BAPI Details
	15.2.3.2 477BBehavior

	15.2.4 266BNodeDelete()
	15.2.4.1 478BAPI Description
	15.2.4.2 479BAPI Details
	15.2.4.3 480BBehavior

	15.2.5 267BOrganizationGet()
	15.2.5.1 481BAPI Description
	15.2.5.2 482BAPI Details
	15.2.5.3 483BBehavior

	15.3 92BNode Types
	15.3.1 268BNodeList Definition
	15.3.2 269BNodeInfo Definition
	15.3.3 270BOrgInfo-type Definition

	15.4 93BNode and Org Images
	15.5 94B94BNode Status Transitions

	16 15B15BDiscrete Media
	16.1 95B95BDiscrete Media Functions
	16.1.1 DiscreteMediaRightCreate()
	16.1.1.1 484B484BAPI Description
	16.1.1.2 485B485BAPI Details
	16.1.1.3 486B486BRequest Behavior
	16.1.1.4 487B487BResponse Behaviour

	16.1.2 272B272BDiscreteMediaRightUpdate()
	16.1.2.1 488B488BAPI Description
	16.1.2.2 489B489BAPI Details
	16.1.2.3 490B490BRequest Behavior
	16.1.2.4 491B491BResponse Behaviour

	16.1.3 273B273BDiscreteMediaRightDelete()
	16.1.3.1 492B492BAPI Description
	16.1.3.2 493B493BAPI Details
	16.1.3.3 494B494BRequest Behavior
	16.1.3.4 495B495BResponse Behaviour

	16.1.4 274B274BDiscreteMediaRightGet()
	16.1.4.1 496B496BAPI Description
	16.1.4.2 497B497BAPI Details
	16.1.4.3 498B498BBehavior

	16.1.5 275B275BDiscreteMediaRightList()
	16.1.5.1 499B499BAPI Description
	16.1.5.2 500B500BAPI Details
	16.1.5.3 501B501BBehavior

	16.1.6 276B276BDiscreteMediaRightLeaseCreate()
	16.1.6.1 502B502BAPI Details
	16.1.6.2 503B503BRequester Behavior
	16.1.6.3 504B504BResponder Behavior

	16.1.7 277B277BDiscreteMediaRightLeaseConsume()
	16.1.7.1 505B505BAPI Description
	16.1.7.2 506B506BAPI Details
	16.1.7.3 507B507BBehavior

	16.1.8 278B278BDiscreteMediaRightLeaseRelease()
	16.1.8.1 508B508BAPI Description
	16.1.8.2 509B509BAPI Details
	16.1.8.3 510B510BBehavior

	16.1.9 279B279BDiscreteMediaRightConsume()
	16.1.9.1 511B511BAPI Description
	16.1.9.2 512B512BAPI Details
	16.1.9.3 513B513BBehavior

	16.1.10 280B280BDiscreteMediaRightLeaseRenew()
	16.1.10.1 514B514BAPI Description
	16.1.10.2 515B515BAPI Details
	16.1.10.3 516B516BBehavior

	16.1.11 281B281BDiscreteMediaRightFulfill()
	16.1.11.1 517B517BAPI Details
	16.1.11.2 518B518BRequest Behavior
	16.1.11.3 519B519BResponse Behavior

	16.2 96B96BDiscrete Media Data Model
	16.2.1 282B282BDiscreteMediaToken
	16.2.2 283B283BDiscreteMediaTokenList Definition
	16.2.3 284B284BDiscrete Media States
	16.2.4 285B285BDiscrete Media Resource Status
	16.2.5 286B286BDiscreteFulfillmentMethod

	16.3 97B97BDiscrete Media State Transitions

	17 16B16BOther
	17.1 98B98BResource Status APIs
	17.1.1 287B287BStatusUpdate()
	17.1.1.1 520B520BAPI Description
	17.1.1.2 521B521BAPI Details
	17.1.1.3 522B522BBehavior

	17.2 99B99BResourceStatus Definition
	17.2.1 288B288BStatus Definition
	17.2.2 289B289BStatusHistory Definition
	17.2.3 290B290BPriorStatus Definition

	17.3 100B100BResourcePropertyQuery()
	17.3.1 291B291BAPI Description
	17.3.2 292B292BAPI Details
	17.3.3 293B293BBehavior
	17.3.3.1 523B523BTargeted Resource Type
	17.3.3.2 524B524BSearch Criteria: XPath Expression
	17.3.3.3 525B525BExamples

	17.4 101B101BOther Data Elements
	17.4.1 294B294BAdminGroup Definition
	17.4.2 295B295BModificationGroup Definition

	17.5 102B102BViewFilterAttr Definition
	17.6 103B103BLocalizedStringAbstract Definition
	17.7 104B104BKeyDescriptor Definition
	17.8 105B105BSubDividedGeolocation-type Definition
	17.8.1 296B296BSubDividedGeolocation Values
	17.8.2 297B297BCalculationMethod Values

	17.9 106B106BTransaction and TransactionList Definitions

	18 17B17BPush Notification
	18.1.1 298B298BSupported Event Classes
	18.1.1.1 526B526BRights Locker Notifications
	18.1.1.2 527B527BPolicyDelete Notifications
	18.1.2 299B299BEligibility for Subscriptions
	18.1.3 300B300BEvent Data Structures
	18.1.3.1 528B528BEventList-type Definition
	18.1.3.2 529B529BEvent Type Definition
	18.1.3.3 530B530BName Attribute Values

	18.1.4 301B301B. Notification Payload Example

	19 18B18BError Management
	19.1 107B107BResponseError Definition

	20 19B19BAppendix A: API Invocation by Role
	21 20B20BAppendix B: Error Codes
	21.1 108B108BCoordinator API Error Messages
	21.2 109B109BS-Host Error Messages
	21.3 110B110BSecurity Layer Error Messages

	22 21B21BAppendix C: Protocol Versions
	23 22B22BAppendix D: Policy Examples (Informative)
	23.1 111B111BParentalControl Policy Example
	23.2 112B112BLockerDataUsageConsent Policy Example
	23.3 113B113BEnableUserDataUsageConsent Policy Example

	24 23B23BAppendix E: Coordinator Parameters
	25 24B24BAppendix F: Geography Policy Requirements (Normative)
	26 25B25BAppendix G: Field Length Restrictions
	26.1 114B114BLimitations on the User Resource
	26.2 115B115BLimitations on the Account Resource
	26.3 116B116BLimitations on the Rights Resource
	26.4 117B117BLimitations on the DigitalAsset Resource
	26.5 118B118BLimitations on the LogicalAsset Resource
	26.6 119B119BLimitations on the RightsToken Resource
	26.7 120B120BLimitations on the BasicAsset Resource
	26.8 121B121BLimitations on the Bundle Resource
	26.9 122B122BLimitations on CompObj Resource
	26.10 123B123BLimitations on Legacy Device Resource

	27 26B26BAppendix H: User Status and APIs Availability
	28 27B27BAppendix I: Requirements for Google Pub/Sub support
	28.1 124B124BRequirements for the Google Pub/Sub service

